/usr/share/axiom-20170501/src/algebra/RDETR.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | )abbrev package RDETR TranscendentalRischDE
++ Author: Manuel Bronstein
++ Date Created: Jan 1988
++ Date Last Updated: 2 November 1995
++ References:
++ Bron90 The Transcendental Risch Differential Equation
++ Description:
++ Risch differential equation, transcendental case.
TranscendentalRischDE(F, UP) : SIG == CODE where
F : Join(Field, CharacteristicZero, RetractableTo Integer)
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Z ==> Integer
RF ==> Fraction UP
REC ==> Record(a:UP, b:UP, c:UP, t:UP)
SPE ==> Record(b:UP, c:UP, m:Z, alpha:UP, beta:UP)
PSOL==> Record(ans:UP, nosol:Boolean)
ANS ==> Union(ans:PSOL, eq:SPE)
PSQ ==> Record(ans:RF, nosol:Boolean)
SIG ==> with
monomRDE : (RF,RF,UP->UP) -> Union(Record(a:UP,b:RF,c:RF,t:UP), "failed")
++ monomRDE(f,g,D) returns \spad{[A, B, C, T]} such that
++ \spad{y' + f y = g} has a solution if and only if \spad{y = Q / T},
++ where Q satisfies \spad{A Q' + B Q = C} and has no normal pole.
++ A and T are polynomials and B and C have no normal poles.
++ D is the derivation to use.
baseRDE : (RF, RF) -> PSQ
++ baseRDE(f, g) returns a \spad{[y, b]} such that \spad{y' + fy = g}
++ if \spad{b = true}, y is a partial solution otherwise (no solution
++ in that case).
++ D is the derivation to use.
polyRDE : (UP, UP, UP, Z, UP -> UP) -> ANS
++ polyRDE(a, B, C, n, D) returns either:
++ 1. \spad{[Q, b]} such that \spad{degree(Q) <= n} and
++ \spad{a Q'+ B Q = C} if \spad{b = true}, Q is a partial solution
++ otherwise.
++ 2. \spad{[B1, C1, m, \alpha, \beta]} such that any polynomial solution
++ of degree at most n of \spad{A Q' + BQ = C} must be of the form
++ \spad{Q = \alpha H + \beta} where \spad{degree(H) <= m} and
++ H satisfies \spad{H' + B1 H = C1}.
++ D is the derivation to use.
CODE ==> add
import MonomialExtensionTools(F, UP)
getBound : (UP, UP, Z) -> Z
SPDEnocancel1: (UP, UP, Z, UP -> UP) -> PSOL
SPDEnocancel2: (UP, UP, Z, Z, F, UP -> UP) -> ANS
SPDE : (UP, UP, UP, Z, UP -> UP) -> Union(SPE, "failed")
-- cancellation at infinity is possible, A is assumed nonzero
-- needs tagged union because of branch choice problem
-- always returns a PSOL in the base case (never a SPE)
polyRDE(aa, bb, cc, d, derivation) ==
n:Z
(u := SPDE(aa, bb, cc, d, derivation)) case "failed" => [[0, true]]
zero?(u.c) => [[u.beta, false]]
baseCase? := ((dt := derivation monomial(1, 1)) = 1)
n := degree(dt)::Z - 1
b0? := zero?(u.b)
(~b0?) and (baseCase? or degree(u.b) > max(0, n)) =>
answ := SPDEnocancel1(u.b, u.c, u.m, derivation)
[[u.alpha * answ.ans + u.beta, answ.nosol]]
(n > 0) and (b0? or degree(u.b) < n) =>
uansw:= SPDEnocancel2(u.b,u.c,u.m,n,leadingCoefficient dt,derivation)
uansw case ans=> [[u.alpha * uansw.ans.ans + u.beta,uansw.ans.nosol]]
[[uansw.eq.b, uansw.eq.c, uansw.eq.m,
u.alpha * uansw.eq.alpha, u.alpha * uansw.eq.beta + u.beta]]
b0? and baseCase? =>
degree(u.c) >= u.m => [[0, true]]
[[u.alpha * integrate(u.c) + u.beta, false]]
[u::SPE]
-- cancellation at infinity is possible, A is assumed nonzero
-- if u.b = 0 then u.a = 1 already, but no degree check is done
-- returns "failed" if a p' + b p = c has no soln of degree at most d,
-- otherwise [B, C, m, \alpha, \beta] such that any soln p of degree at
-- most d of a p' + b p = c must be of the form p = \alpha h + \beta,
-- where h' + B h = C and h has degree at most m
SPDE(aa, bb, cc, d, derivation) ==
zero? cc => [0, 0, 0, 0, 0]
d < 0 => "failed"
(u := cc exquo (g := gcd(aa, bb))) case "failed" => "failed"
aa := (aa exquo g)::UP
bb := (bb exquo g)::UP
cc := u::UP
(ra := retractIfCan(aa)@Union(F, "failed")) case F =>
a1 := inv(ra::F)
[a1 * bb, a1 * cc, d, 1, 0]
bc := extendedEuclidean(bb, aa, cc)::Record(coef1:UP, coef2:UP)
qr := divide(bc.coef1, aa)
r := qr.remainder -- z = bc.coef2 + b * qr.quotient
(v := SPDE(aa, bb + derivation aa,
bc.coef2 + bb * qr.quotient - derivation r,
d - degree(aa)::Z, derivation)) case "failed" => "failed"
[v.b, v.c, v.m, aa * v.alpha, aa * v.beta + r]
-- solves q' + b q = c with deg(q) <= d
-- case (B <> 0) and (D = d/dt or degree(B) > max(0, degree(Dt) - 1))
-- this implies no cancellation at infinity, BQ term dominates
-- returns [Q, flag] such that Q is a solution if flag is false,
-- a partial solution otherwise.
SPDEnocancel1(bb, cc, d, derivation) ==
q:UP := 0
db := (degree bb)::Z
lb := leadingCoefficient bb
while cc ^= 0 repeat
d < 0 or (n := (degree cc)::Z - db) < 0 or n > d => return [q, true]
r := monomial((leadingCoefficient cc) / lb, n::N)
cc := cc - bb * r - derivation r
d := n - 1
q := q + r
[q, false]
-- case (t is a nonlinear monomial) and (B = 0 or degree(B) < degree(Dt) - 1)
-- this implies no cancellation at infinity, DQ term dominates or degree(Q) = 0
-- dtm1 = degree(Dt) - 1
SPDEnocancel2(bb, cc, d, dtm1, lt, derivation) ==
q:UP := 0
while cc ^= 0 repeat
d < 0 or (n := (degree cc)::Z - dtm1) < 0 or n > d => return [[q,true]]
if n > 0 then
r := monomial((leadingCoefficient cc) / (n * lt), n::N)
cc := cc - bb * r - derivation r
d := n - 1
q := q + r
else -- n = 0 so solution must have degree 0
db:N := (zero? bb => 0; degree bb);
db ^= degree(cc) => return [[q, true]]
zero? db => return [[bb, cc, 0, 1, q]]
r := leadingCoefficient(cc) / leadingCoefficient(bb)
cc := cc - r * bb - derivation(r::UP)
d := - 1
q := q + r::UP
[[q, false]]
monomRDE(f, g, derivation) ==
gg := gcd(d := normalDenom(f,derivation), e := normalDenom(g,derivation))
tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP
(u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed"
[aa, aa * f - (d * derivation tt)::RF, u::UP * e * g, tt]
-- solve y' + f y = g for y in RF
-- assumes that f is weakly normalized (no finite cancellation)
-- base case: F' = 0
baseRDE(f, g) ==
(u := monomRDE(f, g, differentiate)) case "failed" => [0, true]
n := getBound(u.a,bb := retract(u.b)@UP,degree(cc := retract(u.c)@UP)::Z)
v := polyRDE(u.a, bb, cc, n, differentiate).ans
[v.ans / u.t, v.nosol]
-- return an a bound on the degree of a solution of A P'+ B P = C,A ^= 0
-- cancellation at infinity is possible
-- base case: F' = 0
getBound(a, b, dc) ==
da := (degree a)::Z
zero? b => max(0, dc - da + 1)
db := (degree b)::Z
da > (db + 1) => max(0, dc - da + 1)
da < (db + 1) => dc - db
(n := retractIfCan(- leadingCoefficient(b) / leadingCoefficient(a)
)@Union(Z, "failed")) case Z => max(n::Z, dc - db)
dc - db
|