/usr/share/axiom-20170501/src/algebra/RDETRS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | )abbrev package RDETRS TranscendentalRischDESystem
++ Author: Manuel Bronstein
++ Date Created: 17 August 1992
++ Date Last Updated: 3 February 1994
++ References
++ Bron90 The Transcendental Risch Differential Equation
++ Description:
++ Risch differential equation system, transcendental case.
TranscendentalRischDESystem(F, UP) : SIG == CODE where
F : Join(Field, CharacteristicZero, RetractableTo Integer)
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Z ==> Integer
RF ==> Fraction UP
V ==> Vector UP
U ==> Union(List UP, "failed")
REC ==> Record(z1:UP, z2:UP, r1:UP, r2:UP)
SIG ==> with
monomRDEsys : (RF, RF, RF, UP -> UP) -> _
Union(Record(a:UP, b:RF, h:UP, c1:RF, c2:RF, t:UP),"failed")
++ monomRDEsys(f,g1,g2,D) returns \spad{[A, B, H, C1, C2, T]} such that
++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution
++ if and only if \spad{y1 = Q1 / T, y2 = Q2 / T},
++ where \spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy
++ A \spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)}
++ D is the derivation to use.
baseRDEsys : (RF, RF, RF) -> Union(List RF, "failed")
++ baseRDEsys(f, g1, g2) returns fractions \spad{y_1.y_2} such that
++ \spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)}
++ if \spad{y_1,y_2} exist, "failed" otherwise.
CODE ==> add
import MonomialExtensionTools(F, UP)
import SmithNormalForm(UP, V, V, Matrix UP)
diophant: (UP, UP, UP, UP, UP) -> Union(REC, "failed")
getBound: (UP, UP, UP, UP, UP) -> Z
SPDEsys : (UP, UP, UP, UP, UP, Z, UP -> UP, (F, F, F, UP, UP, Z) -> U) -> U
DSPDEsys: (F, UP, UP, UP, UP, Z, UP -> UP) -> U
DSPDEmix: (UP, UP, F, F, N, Z, F) -> U
DSPDEhdom: (UP, UP, F, F, N, Z) -> U
DSPDEbdom: (UP, UP, F, F, N, Z) -> U
DSPDEsys0: (F, UP, UP, UP, UP, F, F, Z, UP -> UP, (UP,UP,F,F,N) -> U) -> U
-- reduces (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) to
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T
-- where A and H are polynomials, and B,C1,C2,Q1 and Q2 have no normal poles.
-- assumes that f is weakly normalized (no finite cancellation)
monomRDEsys(f, g1, g2, derivation) ==
gg := gcd(d := normalDenom(f, derivation),
e := lcm(normalDenom(g1,derivation),normalDenom(g2,derivation)))
tt := (gcd(e, differentiate e) exquo gcd(gg,differentiate gg))::UP
(u := ((tt * (aa := d * tt)) exquo e)) case "failed" => "failed"
[aa, tt * d * f, - d * derivation tt, u::UP * e * g1, u::UP * e * g2, tt]
-- solve (y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2) for y1,y2 in RF
-- assumes that f is weakly normalized (no finite cancellation) and nonzero
-- base case: F' = 0
baseRDEsys(f, g1, g2) ==
zero? f => error "baseRDEsys: f must be nonzero"
zero? g1 and zero? g2 => [0, 0]
(u := monomRDEsys(f, g1, g2, differentiate)) case "failed" => "failed"
n := getBound(u.a, bb := retract(u.b), u.h,
cc1 := retract(u.c1), cc2 := retract(u.c2))
(v := SPDEsys(u.a, bb, u.h, cc1, cc2, n, differentiate,
(z1,z2,z3,z4,z5,z6) +->
DSPDEsys(z1, z2::UP, z3::UP, z4, z5, z6, differentiate)))
case "failed" => "failed"
l := v::List(UP)
[first(l) / u.t, second(l) / u.t]
-- solve
-- D1 = A Z1 + B R1 - C R2
-- D2 = A Z2 + C R1 + B R2
-- (D1,D2) = ((A, 0, B, -C), (0, A, C, B)) (Z1, Z2, R1, R2)
-- for R1, R2 with degree(Ri) < degree(A)
-- assumes (A,B,C) = (1) and A and C are nonzero
diophant(a, b, c, d1, d2) ==
(u := diophantineSystem(matrix [[a,0,b,-c], [0,a,c,b]],
vector [d1,d2]).particular) case "failed" => "failed"
v := u::V
qr1 := divide(v 3, a)
qr2 := divide(v 4, a)
[v.1 + b * qr1.quotient - c * qr2.quotient,
v.2 + c * qr1.quotient + b * qr2.quotient, qr1.remainder, qr2.remainder]
-- solve
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)
-- for polynomials Q1 and Q2 with degree <= n
-- A and B are nonzero
-- cancellation at infinity is possible
SPDEsys(a, b, h, c1, c2, n, derivation, degradation) ==
zero? c1 and zero? c2 => [0, 0]
n < 0 => "failed"
g := gcd(a, gcd(b, h))
((u1 := c1 exquo g) case "failed") or
((u2 := c2 exquo g) case "failed") => "failed"
a := (a exquo g)::UP
b := (b exquo g)::UP
h := (h exquo g)::UP
c1 := u1::UP
c2 := u2::UP
(da := degree a) > 0 =>
(u := diophant(a, h, b, c1, c2)) case "failed" => "failed"
rec := u::REC
v := SPDEsys(a, b, h + derivation a, rec.z1 - derivation(rec.r1),
rec.z2 - derivation(rec.r2),n-da::Z,derivation,degradation)
v case "failed" => "failed"
l := v::List(UP)
[a * first(l) + rec.r1, a * second(l) + rec.r2]
ra := retract(a)@F
((rb := retractIfCan(b)@Union(F, "failed")) case "failed") or
((rh := retractIfCan(h)@Union(F, "failed")) case "failed") =>
DSPDEsys(ra, b, h, c1, c2, n, derivation)
degradation(ra, rb::F, rh::F, c1, c2, n)
-- solve
-- a (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)
-- for polynomials Q1 and Q2 with degree <= n
-- a and B are nonzero, either B or H has positive degree
-- cancellation at infinity is not possible
DSPDEsys(a, b, h, c1, c2, n, derivation) ==
bb := degree(b)::Z
hh:Z :=
zero? h => 0
degree(h)::Z
lb := leadingCoefficient b
lh := leadingCoefficient h
bb < hh =>
DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,
(z1,z2,z3,z4,z5) +-> DSPDEhdom(z1,z2,z3,z4,z5,hh))
bb > hh =>
DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,
(z1,z2,z3,z4,z5) +-> DSPDEbdom(z1,z2,z3,z4,z5,bb))
det := lb * lb + lh * lh
DSPDEsys0(a,b,h,c1,c2,lb,lh,n,derivation,
(z1,z2,z3,z4,z5) +-> DSPDEmix(z1,z2,z3,z4,z5,bb,det))
DSPDEsys0(a, b, h, c1, c2, lb, lh, n, derivation, getlc) ==
ans1 := ans2 := 0::UP
repeat
zero? c1 and zero? c2 => return [ans1, ans2]
n < 0 or (u:= getlc(c1,c2,lb,lh,n::N)) case "failed" => return "failed"
lq := u::List(UP)
q1 := first lq
q2 := second lq
c1 := c1 - a * derivation(q1) - h * q1 + b * q2
c2 := c2 - a * derivation(q2) - b * q1 - h * q2
n := n - 1
ans1 := ans1 + q1
ans2 := ans2 + q2
DSPDEmix(c1, c2, lb, lh, n, d, det) ==
rh1:F :=
zero? c1 => 0
(d1 := degree(c1)::Z - d) < n => 0
d1 > n => return "failed"
leadingCoefficient c1
rh2:F :=
zero? c2 => 0
(d2 := degree(c2)::Z - d) < n => 0
d2 > n => return "failed"
leadingCoefficient c2
q1 := (rh1 * lh + rh2 * lb) / det
q2 := (rh2 * lh - rh1 * lb) / det
[monomial(q1, n), monomial(q2, n)]
DSPDEhdom(c1, c2, lb, lh, n, d) ==
q1:UP :=
zero? c1 => 0
(d1 := degree(c1)::Z - d) < n => 0
d1 > n => return "failed"
monomial(leadingCoefficient(c1) / lh, n)
q2:UP :=
zero? c2 => 0
(d2 := degree(c2)::Z - d) < n => 0
d2 > n => return "failed"
monomial(leadingCoefficient(c2) / lh, n)
[q1, q2]
DSPDEbdom(c1, c2, lb, lh, n, d) ==
q1:UP :=
zero? c2 => 0
(d2 := degree(c2)::Z - d) < n => 0
d2 > n => return "failed"
monomial(leadingCoefficient(c2) / lb, n)
q2:UP :=
zero? c1 => 0
(d1 := degree(c1)::Z - d) < n => 0
d1 > n => return "failed"
monomial(- leadingCoefficient(c1) / lb, n)
[q1, q2]
-- return a common bound on the degrees of a solution of
-- A (Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2), Q1 = y1 T, Q2 = y2 T
-- cancellation at infinity is possible
-- a and b are nonzero
-- base case: F' = 0
getBound(a, b, h, c1, c2) ==
da := (degree a)::Z
dc :=
zero? c1 => degree(c2)::Z
zero? c2 => degree(c1)::Z
max(degree c1, degree c2)::Z
hh:Z :=
zero? h => 0
degree(h)::Z
db := max(hh, bb := degree(b)::Z)
da < db + 1 => dc - db
da > db + 1 => max(0, dc - da + 1)
bb >= hh => dc - db
(n := retractIfCan(leadingCoefficient(h) / leadingCoefficient(a)
)@Union(Z, "failed")) case Z => max(n::Z, dc - db)
dc - db
|