This file is indexed.

/usr/share/axiom-20170501/src/algebra/REAL0.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
)abbrev package REAL0 RealZeroPackage
++ Author: Andy Neff
++ Description:
++ This package provides functions for finding the real zeros
++ of univariate polynomials over the integers to arbitrary user-specified
++ precision. The results are returned as a list of
++ isolating intervals which are expressed as records with 
++ "left" and "right" rational number components.

RealZeroPackage(Pol) : SIG == CODE where
  Pol : UnivariatePolynomialCategory Integer

  RN ==> Fraction Integer
  Interval ==> Record(left : RN, right : RN)
  isoList ==> List(Interval)

  SIG ==> with

    -- next two functions find isolating intervals

    realZeros : (Pol) -> isoList
      ++ realZeros(pol) returns a list of isolating intervals for
      ++ all the real zeros of the univariate polynomial pol.

    realZeros : (Pol, Interval) -> isoList
      ++ realZeros(pol, range) returns a list of isolating intervals
      ++ for all the real zeros of the univariate polynomial pol which
      ++ lie in the interval expressed by the record range.

    -- next two functions return intervals smaller then tolerence

    realZeros : (Pol, RN) -> isoList
      ++ realZeros(pol, eps) returns a list of intervals of length less
      ++ than the rational number eps for all the real roots of the
      ++ polynomial pol.

    realZeros : (Pol, Interval, RN) -> isoList
      ++ realZeros(pol, int, eps) returns a list of intervals of length
      ++ less than the rational number eps for all the real roots of the
      ++ polynomial pol which lie in the interval expressed by the
      ++ record int.

    refine : (Pol, Interval, RN) -> Interval
      ++ refine(pol, int, eps) refines the interval int containing
      ++ exactly one root of the univariate polynomial pol to size less
      ++ than the rational number eps.

    refine : (Pol, Interval, Interval) -> Union(Interval,"failed")
      ++ refine(pol, int, range) takes a univariate polynomial pol and
      ++ and isolating interval int containing exactly one real
      ++ root of pol; the operation returns an isolating interval which
      ++ is contained within range, or "failed" if no such isolating interval exists.

    midpoint : Interval -> RN
      ++ midpoint(int) returns the midpoint of the interval int.

    midpoints : isoList -> List RN
      ++ midpoints(isolist) returns the list of midpoints for the list
      ++ of intervals isolist.

  CODE ==> add

      --Local Functions
      makeSqfr: Pol -> Pol
      ReZeroSqfr: (Pol) -> isoList
      PosZero: (Pol) -> isoList
      Zero1: (Pol) -> isoList
      transMult: (Integer, Pol) -> Pol
      transMultInv: (Integer, Pol) -> Pol
      transAdd1: (Pol) -> Pol
      invert: (Pol) -> Pol
      minus: (Pol) -> Pol
      negate: Interval -> Interval
      rootBound: (Pol) -> Integer
      var: (Pol) -> Integer

      negate(int : Interval):Interval == [-int.right,-int.left]

      midpoint(i : Interval):RN ==  (1/2)*(i.left + i.right)

      midpoints(li : isoList) : List RN ==
        [midpoint x for x in li]

      makeSqfr(F : Pol):Pol ==
         sqfr := squareFree F
         F := */[s.factor for s in factors(sqfr)]

      realZeros(F : Pol) ==
         ReZeroSqfr makeSqfr F

      realZeros(F : Pol, rn : RN) ==
         F := makeSqfr F
         [refine(F,int,rn) for int in ReZeroSqfr(F)]

      realZeros(F : Pol, bounds : Interval) ==
         F := makeSqfr F
         [rint::Interval for int in ReZeroSqfr(F) |
             (rint:=refine(F,int,bounds)) case Interval]

      realZeros(F : Pol, bounds : Interval, rn : RN) ==
         F := makeSqfr F
         [refine(F,int,rn) for int in realZeros(F,bounds)]

      ReZeroSqfr(F : Pol) ==
         F = 0 => error "ReZeroSqfr: zero polynomial"
         L : isoList := []
         degree(F) = 0 => L
         if (r := minimumDegree(F)) > 0 then
              L := [[0,0]$Interval]
              tempF := F exquo monomial(1, r)
              if not (tempF case "failed") then
                   F := tempF
         J:isoList := [negate int for int in reverse(PosZero(minus(F)))]
         K : isoList := PosZero(F)
         append(append(J, L), K)

      PosZero(F : Pol) ==   --F is square free, primitive
                          --and F(0) ^= 0; returns isoList for positive
                          --roots of F

         b : Integer := rootBound(F)
         F := transMult(b,F)
         L : isoList := Zero1(F)
         int : Interval
         L := [[b*int.left, b*int.right]$Interval for int in L]

      Zero1(F : Pol) ==   --returns isoList for roots of F in (0,1)
         J : isoList
         K : isoList
         L : isoList
         L := []
         (v := var(transAdd1(invert(F)))) = 0 => []
         v = 1 => L := [[0,1]$Interval]
         G : Pol := transMultInv(2, F)
         H : Pol := transAdd1(G)
         if minimumDegree H > 0 then
                 -- H has a root at 0 => F has one at 1/2, and G at 1
              L := [[1/2,1/2]$Interval]
              Q : Pol := monomial(1, 1)
              tempH : Union(Pol, "failed") := H exquo Q
              if not (tempH case "failed") then H := tempH
              Q := Q + monomial(-1, 0)
              tempG : Union(Pol, "failed") := G exquo Q
              if not (tempG case "failed") then G := tempG
         int : Interval
         J := [[(int.left+1)* (1/2),(int.right+1) * (1/2)]$Interval
                                                 for int in Zero1(H)]
         K := [[int.left * (1/2), int.right * (1/2)]$Interval
                                                 for int in Zero1(G)]
         append(append(J, L), K)

      rootBound(F : Pol) ==  --returns power of 2 that is a bound
                             --for the positive roots of F
         if leadingCoefficient(F) < 0 then F := -F
         lcoef := leadingCoefficient(F)
         F := reductum(F)
         i : Integer := 0
         while not (F = 0) repeat
              if (an := leadingCoefficient(F)) < 0 then i := i - an
              F := reductum(F)
         b : Integer := 1
         while (b * lcoef) <= i repeat
              b := 2 * b
         b

      transMult(c : Integer, F : Pol) ==
                  --computes Pol G such that G(x) = F(c*x)
         G : Pol := 0
         while not (F = 0) repeat
              n := degree(F)
              G := G + monomial((c**n) * leadingCoefficient(F), n)
              F := reductum(F)
         G

      transMultInv(c : Integer, F : Pol) ==
                  --computes Pol G such that G(x) = (c**n) * F(x/c)
         d := degree(F)
         cc : Integer := 1
         G : Pol := monomial(leadingCoefficient F,d)
         while (F:=reductum(F)) ^= 0 repeat
              n := degree(F)
              cc := cc*(c**(d-n):NonNegativeInteger)
              G := G + monomial(cc * leadingCoefficient(F), n)
              d := n
         G

      transAdd1(F : Pol) ==
                  --computes Pol G such that G(x) = F(x+1)
         n := degree F
         v := vectorise(F, n+1)
         for i in 0..(n-1) repeat
            for j in (n-i)..n repeat
               qsetelt_!(v,j, qelt(v,j) + qelt(v,(j+1)))
         ans : Pol := 0
         for i in 0..n repeat
            ans := ans + monomial(qelt(v,(i+1)),i)
         ans


      minus(F : Pol) ==
                  --computes Pol G such that G(x) = F(-x)
         G : Pol := 0
         while not (F = 0) repeat
              n := degree(F)
              coef := leadingCoefficient(F)
              odd? n =>
                   G := G + monomial(-coef, n)
                   F := reductum(F)
              G := G + monomial(coef, n)
              F := reductum(F)
         G

      invert(F : Pol) ==
                  --computes Pol G such that G(x) = (x**n) * F(1/x)
         G : Pol := 0
         n := degree(F)
         while not (F = 0) repeat
              G := G + monomial(leadingCoefficient(F),
                                (n-degree(F))::NonNegativeInteger)
              F := reductum(F)
         G

      var(F : Pol) ==    --number of sign variations in coefs of F
         i : Integer := 0
         LastCoef : Boolean
         next : Boolean
         LastCoef := leadingCoefficient(F) < 0
         while not ((F := reductum(F)) = 0) repeat
              next := leadingCoefficient(F) < 0
              if ((not LastCoef) and next) or
                  ((not next) and LastCoef) then i := i+1
              LastCoef := next
         i

      refine(F : Pol, int : Interval, bounds : Interval) ==
         lseg := min(int.right,bounds.right) - max(int.left,bounds.left)
         lseg < 0 => "failed"
         lseg = 0 =>
            pt :=
               int.left = bounds.right => int.left
               int.right
            elt(transMultInv(denom(pt),F),numer pt) = 0 => [pt,pt]
            "failed"
         lseg = int.right - int.left => int
         refine(F, refine(F, int, lseg), bounds)

      refine(F : Pol, int : Interval, eps : RN) ==
         a := int.left
         b := int.right
         a=b => [a,b]$Interval
         an : Integer := numer(a)
         ad : Integer := denom(a)
         bn : Integer := numer(b)
         bd : Integer := denom(b)
         xfl : Boolean := false
         if (u:=elt(transMultInv(ad, F), an)) = 0 then
             F := (F exquo (monomial(ad,1)-monomial(an,0)))::Pol
             u:=elt(transMultInv(ad, F), an)
         if (v:=elt(transMultInv(bd, F), bn)) = 0 then
             F := (F exquo (monomial(bd,1)-monomial(bn,0)))::Pol
             v:=elt(transMultInv(bd, F), bn)
             u:=elt(transMultInv(ad, F), an)
         if u > 0 then (F:=-F;v:=-v)
         if v < 0 then
            error [int, "is not a valid isolation interval for", F]
         if eps <= 0 then error "precision must be positive"
         while (b - a) >= eps repeat
              mid : RN := (b + a) * (1/2)
              midn : Integer := numer(mid)
              midd : Integer := denom(mid)
              (v := elt(transMultInv(midd, F), midn)) < 0 =>
                   a := mid
                   an := midn
                   ad := midd
              v > 0 =>
                   b := mid
                   bn := midn
                   bd := midd
              v = 0 =>
                   a := mid
                   b := mid
                   an := midn
                   ad := midd
                   xfl := true
         [a, b]$Interval