/usr/share/axiom-20170501/src/algebra/REAL0Q.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | )abbrev package REAL0Q RealZeroPackageQ
++ Author: Andy Neff, Barry Trager
++ Date Last Updated: 7 April 1991
++ Description:
++ This package provides functions for finding the real zeros of univariate
++ polynomials over the rational numbers to arbitrary user-specified
++ precision. The results are returned as a list of isolating intervals,
++ expressed as records with "left" and "right" rational number components.
RealZeroPackageQ(Pol) : SIG == CODE where
RN ==> Fraction Integer
Pol : UnivariatePolynomialCategory RN
I ==> Integer
SUP ==> SparseUnivariatePolynomial
Interval ==> Record(left : RN, right : RN)
isoList ==> List(Interval)
ApproxInfo ==> Record(approx : RN, exFlag : Boolean)
SIG ==> with
-- next two functions find isolating intervals
realZeros : (Pol) -> isoList
++ realZeros(pol) returns a list of isolating intervals for
++ all the real zeros of the univariate polynomial pol.
realZeros : (Pol, Interval) -> isoList
++ realZeros(pol, range) returns a list of isolating intervals
++ for all the real zeros of the univariate polynomial pol which
++ lie in the interval expressed by the record range.
-- next two functions return intervals smaller then tolerence
realZeros : (Pol, RN) -> isoList
++ realZeros(pol, eps) returns a list of intervals of length less
++ than the rational number eps for all the real roots of the
++ polynomial pol.
realZeros : (Pol, Interval, RN) -> isoList
++ realZeros(pol, int, eps) returns a list of intervals of length
++ less than the rational number eps for all the real roots of the
++ polynomial pol which lie in the interval expressed by the
++ record int.
refine : (Pol, Interval, RN) -> Interval
++ refine(pol, int, eps) refines the interval int containing
++ exactly one root of the univariate polynomial pol to size less
++ than the rational number eps.
refine : (Pol, Interval, Interval) -> Union(Interval,"failed")
++ refine(pol, int, range) takes a univariate polynomial pol and
++ and isolating interval int which must contain exactly one real
++ root of pol, and returns an isolating interval which
++ is contained within range, or "failed" if no such isolating interval exists.
CODE ==> add
import RealZeroPackage SparseUnivariatePolynomial Integer
convert2PolInt: Pol -> SparseUnivariatePolynomial Integer
convert2PolInt(f : Pol) ==
pden:I :=lcm([denom c for c in coefficients f])
map(numer,pden * f)_
$UnivariatePolynomialCategoryFunctions2(RN,Pol,I,SUP I)
realZeros(f : Pol) == realZeros(convert2PolInt f)
realZeros(f : Pol, rn : RN) == realZeros(convert2PolInt f, rn)
realZeros(f : Pol, bounds : Interval) ==
realZeros(convert2PolInt f, bounds)
realZeros(f : Pol, bounds : Interval, rn : RN) ==
realZeros(convert2PolInt f, bounds, rn)
refine(f : Pol, int : Interval, eps : RN) ==
refine(convert2PolInt f, int, eps)
refine(f : Pol, int : Interval, bounds : Interval) ==
refine(convert2PolInt f, int, bounds)
|