/usr/share/axiom-20170501/src/algebra/RECOP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | )abbrev package RECOP RecurrenceOperator
++ Author: Martin Rubey
++ Description:
++ This package provides an operator for the n-th term of a recurrence and an
++ operator for the coefficient of x^n in a function specified by a functional
++ equation.
RecurrenceOperator(R, F) : SIG == CODE where
R: Join(OrderedSet, IntegralDomain, ConvertibleTo InputForm)
F: Join(FunctionSpace R, AbelianMonoid, RetractableTo Integer, _
RetractableTo Symbol, PartialDifferentialRing Symbol, _
CombinatorialOpsCategory)
SIG ==> with
evalRec : (BasicOperator, Symbol, F, F, F, List F) -> F
++ \spad{evalRec(u, dummy, n, n0, eq, values)} creates an expression that
++ stands for u(n0), where u(n) is given by the equation eq. However, for
++ technical reasons the variable n has to be replaced by a dummy
++ variable dummy in eq. The argument values specifies the initial values
++ of the recurrence u(0), u(1),...
++ For the moment we don't allow recursions that contain u inside of
++ another operator.
evalADE : (BasicOperator, Symbol, F, F, F, List F) -> F
++ \spad{evalADE(f, dummy, x, n, eq, values)} creates an expression that
++ stands for the coefficient of x^n in the Taylor expansion of f(x),
++ where f(x) is given by the functional equation eq. However, for
++ technical reasons the variable x has to be replaced by a dummy
++ variable dummy in eq. The argument values specifies the first few
++ Taylor coefficients.
getEq : F -> F
++ \spad{getEq f} returns the defining equation, if f represents the
++ coefficient of an ADE or a recurrence.
getOp : F -> BasicOperator
++ \spad{getOp f}, if f represents the coefficient of a recurrence or
++ ADE, returns the operator representing the solution
-- should be local
numberOfValuesNeeded : (Integer, BasicOperator, Symbol, F) -> Integer
-- should be local
if R has Ring then
getShiftRec : (BasicOperator, Kernel F, Symbol) -> Union(Integer, "failed")
shiftInfoRec : (BasicOperator, Symbol, F) ->
Record(max: Union(Integer, "failed"),
ord: Union(Integer, "failed"),
ker: Kernel F)
CODE ==> add
oprecur := operator("rootOfRec"::Symbol)$BasicOperator
opADE := operator("rootOfADE"::Symbol)$BasicOperator
setProperty(oprecur, "%dummyVar", 2 pretend None)
setProperty(opADE, "%dummyVar", 2 pretend None)
eqAsF: List F -> F
eqAsF l == l.1
dummy: List F -> Symbol
dummy l == retract(l.2)@Symbol
dummyAsF: List F -> F
dummyAsF l == l.2
displayVariable: List F -> F
displayVariable l == l.3
operatorName: List F -> BasicOperator
operatorName l == operator(kernels(l.4).1)
operatorNameAsF: List F -> F
operatorNameAsF l == l.4
operatorArgument: List F -> F
operatorArgument l == argument(kernels(l.4).1).1
initialValues: List F -> List F
initialValues l == rest(l, 4)
if R has Ring then
getShiftRec(op: BasicOperator, f: Kernel F, n: Symbol)
: Union(Integer, "failed") ==
a := argument f
if every?(z +-> freeOf?(z, n::F), a) then return 0
if #a ~= 1 then error "RECOP: operator should have only one argument"
p := univariate(a.1, retract(n::F)@Kernel(F))
if denominator p ~= 1 then return "failed"
num := numer p
if degree num = 1 and coefficient(num, 1) = 1
and every?(z +-> freeOf?(z, n::F), coefficients num)
then return retractIfCan(coefficient(num, 0))
else return "failed"
-- if the recurrence is of the form
-- $p(n, f(n+m-o), f(n+m-o+1), \dots, f(n+m)) = 0$
-- in which case shiftInfoRec returns [m, o, f(n+m)].
shiftInfoRec(op: BasicOperator, argsym: Symbol, eq: F):
Record(max: Union(Integer, "failed"),
ord: Union(Integer, "failed"),
ker: Kernel F) ==
-- ord and ker are valid only if all shifts are Integers
-- ker is the kernel of the maximal shift.
maxShift: Integer
minShift: Integer
nextKernel: Kernel F
-- We consider only those kernels that have op as operator. If there is none,
-- we raise an error. For the moment we don't allow recursions that contain op
-- inside of another operator.
error? := true
for f in kernels eq repeat
if is?(f, op) then
shift := getShiftRec(op, f, argsym)
if error? then
error? := false
nextKernel := f
if shift case Integer then
maxShift := shift
minShift := shift
else return ["failed", "failed", nextKernel]
else
if shift case Integer then
if maxShift < shift then
maxShift := shift
nextKernel := f
if minShift > shift then
minShift := shift
else return ["failed", "failed", nextKernel]
if error? then error "evalRec: equation does not contain operator"
[maxShift, maxShift - minShift, nextKernel]
evalRec(op, argsym, argdisp, arg, eq, values) ==
if ((n := retractIfCan(arg)@Union(Integer, "failed")) case "failed")
or (n < 0)
then
shiftInfo := shiftInfoRec(op, argsym, eq)
if (shiftInfo.ord case "failed") or ((shiftInfo.ord)::Integer > 0)
then
kernel(oprecur,
append([eq, argsym::F, argdisp, op(arg)], values))
else
p := univariate(eq, shiftInfo.ker)
num := numer p
-- If the degree is 1, we can return the function explicitly.
if degree num = 1 then
eval(-coefficient(num, 0)/coefficient(num, 1), argsym::F,
arg::F-(shiftInfo.max)::Integer::F)
else
kernel(oprecur,
append([eq, argsym::F, argdisp, op(arg)], values))
else
len: Integer := #values
if n < len
then values.(len-n)
else
shiftInfo := shiftInfoRec(op, argsym, eq)
if shiftInfo.max case Integer then
p := univariate(eq, shiftInfo.ker)
num := numer p
if degree num = 1 then
next := -coefficient(num, 0)/coefficient(num, 1)
nextval := eval(next, argsym::F,
(len-(shiftInfo.max)::Integer)::F)
newval := eval(nextval, op,
z+->evalRec(op, argsym, argdisp, z, eq, values))
evalRec(op, argsym, argdisp, arg, eq, cons(newval, values))
else
kernel(oprecur,
append([eq, argsym::F, argdisp, op(arg)], values))
else
kernel(oprecur,
append([eq, argsym::F, argdisp, op(arg)], values))
numberOfValuesNeeded(numberOfValues: Integer,
op: BasicOperator,
argsym: Symbol, eq: F): Integer ==
order := shiftInfoRec(op, argsym, eq).ord
if order case Integer
then min(numberOfValues, retract(order)@Integer)
else numberOfValues
else
evalRec(op, argsym, argdisp, arg, eq, values) ==
kernel(oprecur,
append([eq, argsym::F, argdisp, op(arg)], values))
numberOfValuesNeeded(numberOfValues: Integer,
op: BasicOperator, argsym: Symbol, eq: F): Integer ==
numberOfValues
irecur: List F -> F
irecur l ==
evalRec(operatorName l,
dummy l, displayVariable l,
operatorArgument l, eqAsF l, initialValues l)
evaluate(oprecur, irecur)$BasicOperatorFunctions1(F)
ddrec: List F -> OutputForm
ddrec l ==
op := operatorName l
values := reverse l
eq := eqAsF l
numberOfValues := numberOfValuesNeeded(#values-4, op, dummy l, eq)
vals: List OutputForm
:= cons(eval(eq, dummyAsF l, displayVariable l)::OutputForm = _
0::OutputForm,
[elt(op::OutputForm, [(i-1)::OutputForm]) = _
(values.i)::OutputForm
for i in 1..numberOfValues])
bracket(hconcat([(operatorNameAsF l)::OutputForm,
": ",
commaSeparate vals]))
setProperty(oprecur, "%specialDisp",
ddrec@(List F -> OutputForm) pretend None)
getOrder(op: BasicOperator, f: Kernel F): NonNegativeInteger ==
res: NonNegativeInteger := 0
g := f
while is?(g, %diff) repeat
g := kernels(argument(g).1).1
res := res+1
if is?(g, op) then res else 0
evalADE(op, argsym, argdisp, arg, eq, values) ==
if not freeOf?(eq, retract(argdisp)@Symbol)
then error "RECOP: The argument should not be used in the equation of the_
ADE"
if ((n := retractIfCan(arg)@Union(Integer, "failed")) case "failed")
then
-- try to determine the necessary number of initial values
keq := kernels eq
order := getOrder(op, keq.1)
for k in rest keq repeat order := max(order, getOrder(op, k))
p: Fraction SparseUnivariatePolynomial F
:= univariate(eq, kernels(D(op(argsym::F), argsym, order)).1)$F
if one? degree numer p
-- the equation is holonomic
then kernel(opADE,
append([eq, argsym::F, argdisp, op(arg)],
reverse first(reverse values, order)))
else kernel(opADE,
append([eq, argsym::F, argdisp, op(arg)], values))
else
if n < 0
then 0
else
keq := kernels eq
order := getOrder(op, keq.1)
-- output(hconcat("The order is ", order::OutputForm))$OutputPackage
for k in rest keq repeat order := max(order, getOrder(op, k))
p: Fraction SparseUnivariatePolynomial F
:= univariate(eq, kernels(D(op(argsym::F), argsym, order)).1)$F
-- output(hconcat("p: ", p::OutputForm))$OutputPackage
if degree numer p > 1
then
-- kernel(opADE,
-- append([eq, argsym::F, argdisp, op(arg)], values))
s := seriesSolve(eq, op, argsym, reverse values)
$ExpressionSolve(R, F,
UnivariateFormalPowerSeries F,
UnivariateFormalPowerSeries
SparseUnivariatePolynomialExpressions F)
elt(s, n::Integer::NonNegativeInteger)
else
s := seriesSolve(eq, op, argsym, first(reverse values, order))
$ExpressionSolve(R, F,
UnivariateFormalPowerSeries F,
UnivariateFormalPowerSeries
SparseUnivariatePolynomialExpressions F)
elt(s, n::Integer::NonNegativeInteger)
iADE: List F -> F
-- This is just a wrapper that allows us to write a recurrence relation as an
-- operator.
iADE l ==
evalADE(operatorName l,
dummy l, displayVariable l,
operatorArgument l, eqAsF l, initialValues l)
evaluate(opADE, iADE)$BasicOperatorFunctions1(F)
getEq(f: F): F ==
ker := kernels f
if one?(#ker) and _
(is?(operator(ker.1), "rootOfADE"::Symbol) or _
is?(operator(ker.1), "rootOfRec"::Symbol)) then
l := argument(ker.1)
eval(eqAsF l, dummyAsF l, displayVariable l)
else
error "getEq: argument should be a single rootOfADE or rootOfRec object"
getOp(f: F): BasicOperator ==
ker := kernels f
if one?(#ker) and _
(is?(operator(ker.1), "rootOfADE"::Symbol) or _
is?(operator(ker.1), "rootOfRec"::Symbol)) then
operatorName argument(ker.1)
else
error "getOp: argument should be a single rootOfADE or rootOfRec object"
ddADE: List F -> OutputForm
ddADE l ==
op := operatorName l
values := reverse l
vals: List OutputForm
:= cons(eval(eqAsF l, dummyAsF l, displayVariable l)::OutputForm = _
0::OutputForm,
[eval(D(op(dummyAsF l), dummy l, i), _
dummyAsF l=0)::OutputForm = _
(values.(i+1))::OutputForm * _
factorial(box(i::R::F)$F)::OutputForm _
for i in 0..min(4,#values-5)])
bracket(hconcat([bracket((displayVariable l)::OutputForm ** _
(operatorArgument l)::OutputForm),
(op(displayVariable l))::OutputForm, ": ",
commaSeparate vals]))
setProperty(opADE, "%specialDisp",
ddADE@(List F -> OutputForm) pretend None)
|