This file is indexed.

/usr/share/axiom-20170501/src/algebra/REGSET.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
)abbrev domain REGSET RegularTriangularSet
++ Author: Marc Moreno Maza
++ Date Created: 08/25/1998
++ Date Last Updated: 16/12/1998
++ References :
++  [1] M. MORENO MAZA "A new algorithm for computing triangular
++      decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Description: 
++ This domain provides an implementation of regular chains.
++ Moreover, the operation zeroSetSplit is an implementation of a new 
++ algorithm for solving polynomial systems by means of regular chains.

RegularTriangularSet(R,E,V,P) : SIG == CODE where
  R : GcdDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)

  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  PtoP ==> P -> P
  PS ==> GeneralPolynomialSet(R,E,V,P)
  PWT ==> Record(val : P, tower : $)
  BWT ==> Record(val : Boolean, tower : $)
  LpWT ==> Record(val : (List P), tower : $)
  Split ==> List $
  iprintpack ==> InternalPrintPackage()
  polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
  quasicomppack ==> QuasiComponentPackage(R,E,V,P,$)
  regsetgcdpack ==> RegularTriangularSetGcdPackage(R,E,V,P,$)
  regsetdecomppack ==> RegularSetDecompositionPackage(R,E,V,P,$)

  SIG ==> RegularTriangularSetCategory(R,E,V,P) with

     internalAugment : (P,$,B,B,B,B,B) -> List $
       ++ \axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)}
       ++ is an internal subroutine, exported only for developement.

     zeroSetSplit : (LP, B, B) -> Split
       ++ \axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as
       ++ zeroSetSplit from RegularTriangularSetCategory.
       ++ Moreover, if \axiom{clos?} then solves in the sense of the Zariski
       ++ closure else solves in the sense of the regular zeros. If 
       ++ \axiom{info?} then do print messages during the computations.

     zeroSetSplit : (LP, B, B, B, B) -> Split
       ++ \axiom{zeroSetSplit(lp,b1,b2.b3,b4)} 
       ++ is an internal subroutine, exported only for developement.

     internalZeroSetSplit : (LP, B, B, B) -> Split
       ++ \axiom{internalZeroSetSplit(lp,b1,b2,b3)}
       ++ is an internal subroutine, exported only for developement.

     pre_process : (LP, B, B) -> Record(val: LP, towers: Split)
       ++ \axiom{pre_process(lp,b1,b2)} 
       ++ is an internal subroutine, exported only for developement.

  CODE ==> add

     Rep ==> LP

     rep(s:$):Rep == s pretend Rep

     per(l:Rep):$ == l pretend $

     copy ts ==
       per(copy(rep(ts))$LP)

     empty() ==
       per([])

     empty?(ts:$) ==
       empty?(rep(ts))

     parts ts ==
       rep(ts)

     members ts ==
       rep(ts)

     map (f : PtoP, ts : $) : $ ==
       construct(map(f,rep(ts))$LP)$$

     map! (f : PtoP, ts : $) : $  ==
       construct(map!(f,rep(ts))$LP)$$

     member? (p,ts) ==
       member?(p,rep(ts))$LP

     unitIdealIfCan() ==
       "failed"::Union($,"failed")

     roughUnitIdeal? ts ==
       false

     coerce(ts:$) : OutputForm ==
       lp : List(P) := reverse(rep(ts))
       brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm

     mvar ts ==
       empty? ts => error "mvar$REGSET: #1 is empty"
       mvar(first(rep(ts)))$P

     first ts ==
       empty? ts => "failed"::Union(P,"failed")
       first(rep(ts))::Union(P,"failed")

     last ts ==
       empty? ts => "failed"::Union(P,"failed")
       last(rep(ts))::Union(P,"failed")

     rest ts ==
       empty? ts => "failed"::Union($,"failed")
       per(rest(rep(ts)))::Union($,"failed")

     coerce(ts:$) : (List P) ==
       rep(ts)

     collectUpper (ts,v) ==
       empty? ts => ts
       lp := rep(ts)
       newlp : Rep := []
       while (not empty? lp) and (mvar(first(lp)) > v) repeat
         newlp := cons(first(lp),newlp)
         lp := rest lp
       per(reverse(newlp))

     collectUnder (ts,v) ==
       empty? ts => ts
       lp := rep(ts)
       while (not empty? lp) and (mvar(first(lp)) >= v) repeat
         lp := rest lp
       per(lp)

     construct(lp:List(P)) ==
       ts : $ := per([])
       empty? lp => ts
       lp := sort(infRittWu?,lp)
       while not empty? lp repeat
         eif := extendIfCan(ts,first(lp))
         not (eif case $) =>
           error"in construct : List P -> $  from REGSET : bad #1"
         ts := eif::$
         lp := rest lp
       ts

     extendIfCan(ts:$,p:P) ==
       ground? p => "failed"::Union($,"failed")       
       empty? ts => 
         p := primitivePart p
         (per([p]))::Union($,"failed")
       not (mvar(ts) < mvar(p)) => "failed"::Union($,"failed")
       invertible?(init(p),ts)@Boolean => 
         (per(cons(p,rep(ts))))::Union($,"failed")
       "failed"::Union($,"failed")

     removeZero(p:P, ts:$): P ==
       (ground? p) or (empty? ts) => p
       v := mvar(p)
       ts_v_- := collectUnder(ts,v)
       if algebraic?(v,ts) 
         then
           q := lazyPrem(p,select(ts,v)::P)
           zero? q => return q
           zero? removeZero(q,ts_v_-) => return 0
       empty? ts_v_- => p
       q: P := 0
       while positive? degree(p,v) repeat
          q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
          p := tail(p)
       q + removeZero(p,ts_v_-)

     internalAugment(p:P,ts:$): $ ==
       -- ASSUME that adding p to ts DOES NOT require any split
       ground? p => error "in internalAugment$REGSET: ground? #1"
       first(internalAugment(p,ts,false,false,false,false,false))

     internalAugment(lp:List(P),ts:$): $ ==
       -- ASSUME that adding p to ts DOES NOT require any split
       empty? lp => ts
       internalAugment(rest lp, internalAugment(first lp, ts))

     internalAugment(p:P,ts:$,rem?:B,red?:B,prim?:B,sqfr?:B,extend?:B):Split ==
       -- ASSUME p is not a constant
       -- ASSUME mvar(p) is not algebraic w.r.t. ts
       -- ASSUME init(p) invertible modulo ts
       -- if rem? then REDUCE p by remainder
       -- if prim? then REPLACE p by its main primitive part
       -- if sqfr? then FACTORIZE SQUARE FREE p over R
       -- if extend? DO NOT ASSUME every pol in ts_v_+ is invertible modulo ts
       v := mvar(p)
       ts_v_- := collectUnder(ts,v)
       ts_v_+ := collectUpper(ts,v)
       if rem? then p := remainder(p,ts_v_-).polnum
       -- if rem? then p := reduceByQuasiMonic(p,ts_v_-)
       if red? then p := removeZero(p,ts_v_-)
       if prim? then p := mainPrimitivePart p
       if sqfr?
         then
           lsfp := squareFreeFactors(p)$polsetpack
           lts: Split := [per(cons(f,rep(ts_v_-))) for f in lsfp]
         else
           lts: Split := [per(cons(p,rep(ts_v_-)))]
       extend? => extend(members(ts_v_+),lts)
       [per(concat(rep(ts_v_+),rep(us))) for us in lts]

     augment(p:P,ts:$): List $ ==
       ground? p => error "in augment$REGSET: ground? #1"
       algebraic?(mvar(p),ts) => error "in augment$REGSET: bad #1"
       -- ASSUME init(p) invertible modulo ts
       -- DOES NOT ASSUME anything else.
       -- THUS reduction, mainPrimitivePart and squareFree are NEEDED
       internalAugment(p,ts,true,true,true,true,true)

     extend(p:P,ts:$): List $ ==
       ground? p => error "in extend$REGSET: ground? #1"
       v := mvar(p)
       not (mvar(ts) < mvar(p)) => error "in extend$REGSET: bad #1"
       lts: List($) := []
       split: List($) := invertibleSet(init(p),ts)
       for us in split repeat
         lts := concat(augment(p,us),lts)
       lts

     invertible?(p:P,ts:$): Boolean == 
       toseInvertible?(p,ts)$regsetgcdpack
       
     invertible?(p:P,ts:$): List BWT ==
       toseInvertible?(p,ts)$regsetgcdpack

     invertibleSet(p:P,ts:$): Split ==
       toseInvertibleSet(p,ts)$regsetgcdpack

     lastSubResultant(p1:P,p2:P,ts:$): List PWT ==
       toseLastSubResultant(p1,p2,ts)$regsetgcdpack

     squareFreePart(p:P, ts: $): List PWT ==
       toseSquareFreePart(p,ts)$regsetgcdpack

     intersect(p:P, ts: $): List($) == 
       decompose([p], [ts], false, false)$regsetdecomppack

     intersect(lp: LP, lts: List($)): List($) == 
       decompose(lp, lts, false, false)$regsetdecomppack
        -- SOLVE in the regular zero sense 
        -- and DO NOT PRINT info

     decompose(p:P, ts: $): List($) == 
       decompose([p], [ts], true, false)$regsetdecomppack

     decompose(lp: LP, lts: List($)): List($) == 
       decompose(lp, lts, true, false)$regsetdecomppack
        -- SOLVE in the closure sense 
        -- and DO NOT PRINT info

     zeroSetSplit(lp:List(P)) == zeroSetSplit(lp,true,false)
        -- by default SOLVE in the closure sense 
        -- and DO NOT PRINT info

     zeroSetSplit(lp:List(P), clos?: B) == zeroSetSplit(lp,clos?, false)
        -- DO NOT PRINT info

     zeroSetSplit(lp:List(P), clos?: B, info?: B) ==
       -- if clos? then SOLVE in the closure sense 
       -- if info? then PRINT info
       -- by default USE hash-tables
       -- and PREPROCESS the input system
       zeroSetSplit(lp,true,clos?,info?,true)

     zeroSetSplit(lp:List(P),hash?:B,clos?:B,info?:B,prep?:B) == 
       -- if hash? then USE hash-tables
       -- if info? then PRINT information
       -- if clos? then SOLVE in the closure sense
       -- if prep? then PREPROCESS the input system
       if hash? 
         then
           s1, s2, s3, dom1, dom2, dom3: String
           e: String := empty()$String
           if info? then (s1,s2,s3) := ("w","g","i") else (s1,s2,s3) := (e,e,e)
           if info? 
             then 
               (dom1, dom2, dom3) := _
                  ("QCMPACK", "REGSETGCD: Gcd", "REGSETGCD: Inv Set")
             else
               (dom1, dom2, dom3) := (e,e,e)
           startTable!(s1,"W",dom1)$quasicomppack
           startTableGcd!(s2,"G",dom2)$regsetgcdpack
           startTableInvSet!(s3,"I",dom3)$regsetgcdpack
       lts := internalZeroSetSplit(lp,clos?,info?,prep?)
       if hash? 
         then
           stopTable!()$quasicomppack
           stopTableGcd!()$regsetgcdpack
           stopTableInvSet!()$regsetgcdpack
       lts

     internalZeroSetSplit(lp:LP,clos?:B,info?:B,prep?:B) ==
       -- if info? then PRINT information
       -- if clos? then SOLVE in the closure sense
       -- if prep? then PREPROCESS the input system
       if prep?
         then
           pp := pre_process(lp,clos?,info?)
           lp := pp.val
           lts := pp.towers
         else
           ts: $ := [[]]
           lts := [ts]
       lp := remove(zero?, lp)
       any?(ground?, lp) => []
       empty? lp => lts
       empty? lts => lts
       lp := sort(infRittWu?,lp)
       clos? => decompose(lp,lts, clos?, info?)$regsetdecomppack
       -- IN DIM > 0 with clos? the following is false ...
       for p in lp repeat
         lts := decompose([p],lts, clos?, info?)$regsetdecomppack
       lts

     largeSystem?(lp:LP): Boolean == 
       -- Gonnet and Gerdt and not Wu-Wang.2
       #lp > 16 => true
       #lp < 13 => false
       lts: List($) := []
       (#lp :: Z - numberOfVariables(lp,lts)$regsetdecomppack :: Z) > 3

     smallSystem?(lp:LP): Boolean == 
       -- neural, Vermeer, Liu, and not f-633 and not Hairer-2
       #lp < 5

     mediumSystem?(lp:LP): Boolean == 
       -- f-633 and not Hairer-2
       lts: List($) := []
       (numberOfVariables(lp,lts)$regsetdecomppack :: Z - #lp :: Z) < 2

     lin?(p:P):Boolean == ground?(init(p)) and (mdeg(p) = 1)

     pre_process(lp:LP,clos?:B,info?:B): Record(val: LP, towers: Split) ==
       -- if info? then PRINT information
       -- if clos? then SOLVE in the closure sense
       ts: $ := [[]]; 
       lts: Split := [ts]
       empty? lp => [lp,lts]
       lp1: List P := []
       lp2: List P := []
       for p in lp repeat 
          ground? (tail p) => lp1 := cons(p, lp1)
          lp2 := cons(p, lp2)
       lts: Split := decompose(lp1,[ts],clos?,info?)$regsetdecomppack
       probablyZeroDim?(lp)$polsetpack =>
          largeSystem?(lp) => return [lp2,lts]
          if #lp > 7
            then 
              -- Butcher (8,8) + Wu-Wang.2 (13,16) 
              lp2 := crushedSet(lp2)$polsetpack
              lp2 := remove(zero?,lp2)
              any?(ground?,lp2) => return [lp2, lts]
              lp3 := [p for p in lp2 | lin?(p)]
              lp4 := [p for p in lp2 | not lin?(p)]
              if clos?
                then 
                  lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
                else
                  lp4 := sort(infRittWu?,lp4)
                  for p in lp4 repeat
                    lts := decompose([p],lts, clos?, info?)$regsetdecomppack
              lp2 := lp3
            else
              lp2 := crushedSet(lp2)$polsetpack
              lp2 := remove(zero?,lp2)
              any?(ground?,lp2) => return [lp2, lts]
          if clos?
            then
              lts := decompose(lp2,lts, clos?, info?)$regsetdecomppack
            else
              lp2 := sort(infRittWu?,lp2)
              for p in lp2 repeat
                lts := decompose([p],lts, clos?, info?)$regsetdecomppack
          lp2 := []
          return [lp2,lts]
       smallSystem?(lp) => [lp2,lts]
       mediumSystem?(lp) => [crushedSet(lp2)$polsetpack,lts]
       lp3 := [p for p in lp2 | lin?(p)]
       lp4 := [p for p in lp2 | not lin?(p)]
       if clos?
         then 
           lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
         else
           lp4 := sort(infRittWu?,lp4)
           for p in lp4 repeat
             lts := decompose([p],lts, clos?, info?)$regsetdecomppack
       if clos?
         then 
           lts := decompose(lp3,lts, clos?, info?)$regsetdecomppack
         else
           lp3 := sort(infRittWu?,lp3)
           for p in lp3 repeat
             lts := decompose([p],lts, clos?, info?)$regsetdecomppack
       lp2 := []
       return [lp2,lts]