/usr/share/axiom-20170501/src/algebra/REGSET.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | )abbrev domain REGSET RegularTriangularSet
++ Author: Marc Moreno Maza
++ Date Created: 08/25/1998
++ Date Last Updated: 16/12/1998
++ References :
++ [1] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Description:
++ This domain provides an implementation of regular chains.
++ Moreover, the operation zeroSetSplit is an implementation of a new
++ algorithm for solving polynomial systems by means of regular chains.
RegularTriangularSet(R,E,V,P) : SIG == CODE where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
PtoP ==> P -> P
PS ==> GeneralPolynomialSet(R,E,V,P)
PWT ==> Record(val : P, tower : $)
BWT ==> Record(val : Boolean, tower : $)
LpWT ==> Record(val : (List P), tower : $)
Split ==> List $
iprintpack ==> InternalPrintPackage()
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
quasicomppack ==> QuasiComponentPackage(R,E,V,P,$)
regsetgcdpack ==> RegularTriangularSetGcdPackage(R,E,V,P,$)
regsetdecomppack ==> RegularSetDecompositionPackage(R,E,V,P,$)
SIG ==> RegularTriangularSetCategory(R,E,V,P) with
internalAugment : (P,$,B,B,B,B,B) -> List $
++ \axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)}
++ is an internal subroutine, exported only for developement.
zeroSetSplit : (LP, B, B) -> Split
++ \axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as
++ zeroSetSplit from RegularTriangularSetCategory.
++ Moreover, if \axiom{clos?} then solves in the sense of the Zariski
++ closure else solves in the sense of the regular zeros. If
++ \axiom{info?} then do print messages during the computations.
zeroSetSplit : (LP, B, B, B, B) -> Split
++ \axiom{zeroSetSplit(lp,b1,b2.b3,b4)}
++ is an internal subroutine, exported only for developement.
internalZeroSetSplit : (LP, B, B, B) -> Split
++ \axiom{internalZeroSetSplit(lp,b1,b2,b3)}
++ is an internal subroutine, exported only for developement.
pre_process : (LP, B, B) -> Record(val: LP, towers: Split)
++ \axiom{pre_process(lp,b1,b2)}
++ is an internal subroutine, exported only for developement.
CODE ==> add
Rep ==> LP
rep(s:$):Rep == s pretend Rep
per(l:Rep):$ == l pretend $
copy ts ==
per(copy(rep(ts))$LP)
empty() ==
per([])
empty?(ts:$) ==
empty?(rep(ts))
parts ts ==
rep(ts)
members ts ==
rep(ts)
map (f : PtoP, ts : $) : $ ==
construct(map(f,rep(ts))$LP)$$
map! (f : PtoP, ts : $) : $ ==
construct(map!(f,rep(ts))$LP)$$
member? (p,ts) ==
member?(p,rep(ts))$LP
unitIdealIfCan() ==
"failed"::Union($,"failed")
roughUnitIdeal? ts ==
false
coerce(ts:$) : OutputForm ==
lp : List(P) := reverse(rep(ts))
brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm
mvar ts ==
empty? ts => error "mvar$REGSET: #1 is empty"
mvar(first(rep(ts)))$P
first ts ==
empty? ts => "failed"::Union(P,"failed")
first(rep(ts))::Union(P,"failed")
last ts ==
empty? ts => "failed"::Union(P,"failed")
last(rep(ts))::Union(P,"failed")
rest ts ==
empty? ts => "failed"::Union($,"failed")
per(rest(rep(ts)))::Union($,"failed")
coerce(ts:$) : (List P) ==
rep(ts)
collectUpper (ts,v) ==
empty? ts => ts
lp := rep(ts)
newlp : Rep := []
while (not empty? lp) and (mvar(first(lp)) > v) repeat
newlp := cons(first(lp),newlp)
lp := rest lp
per(reverse(newlp))
collectUnder (ts,v) ==
empty? ts => ts
lp := rep(ts)
while (not empty? lp) and (mvar(first(lp)) >= v) repeat
lp := rest lp
per(lp)
construct(lp:List(P)) ==
ts : $ := per([])
empty? lp => ts
lp := sort(infRittWu?,lp)
while not empty? lp repeat
eif := extendIfCan(ts,first(lp))
not (eif case $) =>
error"in construct : List P -> $ from REGSET : bad #1"
ts := eif::$
lp := rest lp
ts
extendIfCan(ts:$,p:P) ==
ground? p => "failed"::Union($,"failed")
empty? ts =>
p := primitivePart p
(per([p]))::Union($,"failed")
not (mvar(ts) < mvar(p)) => "failed"::Union($,"failed")
invertible?(init(p),ts)@Boolean =>
(per(cons(p,rep(ts))))::Union($,"failed")
"failed"::Union($,"failed")
removeZero(p:P, ts:$): P ==
(ground? p) or (empty? ts) => p
v := mvar(p)
ts_v_- := collectUnder(ts,v)
if algebraic?(v,ts)
then
q := lazyPrem(p,select(ts,v)::P)
zero? q => return q
zero? removeZero(q,ts_v_-) => return 0
empty? ts_v_- => p
q: P := 0
while positive? degree(p,v) repeat
q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
p := tail(p)
q + removeZero(p,ts_v_-)
internalAugment(p:P,ts:$): $ ==
-- ASSUME that adding p to ts DOES NOT require any split
ground? p => error "in internalAugment$REGSET: ground? #1"
first(internalAugment(p,ts,false,false,false,false,false))
internalAugment(lp:List(P),ts:$): $ ==
-- ASSUME that adding p to ts DOES NOT require any split
empty? lp => ts
internalAugment(rest lp, internalAugment(first lp, ts))
internalAugment(p:P,ts:$,rem?:B,red?:B,prim?:B,sqfr?:B,extend?:B):Split ==
-- ASSUME p is not a constant
-- ASSUME mvar(p) is not algebraic w.r.t. ts
-- ASSUME init(p) invertible modulo ts
-- if rem? then REDUCE p by remainder
-- if prim? then REPLACE p by its main primitive part
-- if sqfr? then FACTORIZE SQUARE FREE p over R
-- if extend? DO NOT ASSUME every pol in ts_v_+ is invertible modulo ts
v := mvar(p)
ts_v_- := collectUnder(ts,v)
ts_v_+ := collectUpper(ts,v)
if rem? then p := remainder(p,ts_v_-).polnum
-- if rem? then p := reduceByQuasiMonic(p,ts_v_-)
if red? then p := removeZero(p,ts_v_-)
if prim? then p := mainPrimitivePart p
if sqfr?
then
lsfp := squareFreeFactors(p)$polsetpack
lts: Split := [per(cons(f,rep(ts_v_-))) for f in lsfp]
else
lts: Split := [per(cons(p,rep(ts_v_-)))]
extend? => extend(members(ts_v_+),lts)
[per(concat(rep(ts_v_+),rep(us))) for us in lts]
augment(p:P,ts:$): List $ ==
ground? p => error "in augment$REGSET: ground? #1"
algebraic?(mvar(p),ts) => error "in augment$REGSET: bad #1"
-- ASSUME init(p) invertible modulo ts
-- DOES NOT ASSUME anything else.
-- THUS reduction, mainPrimitivePart and squareFree are NEEDED
internalAugment(p,ts,true,true,true,true,true)
extend(p:P,ts:$): List $ ==
ground? p => error "in extend$REGSET: ground? #1"
v := mvar(p)
not (mvar(ts) < mvar(p)) => error "in extend$REGSET: bad #1"
lts: List($) := []
split: List($) := invertibleSet(init(p),ts)
for us in split repeat
lts := concat(augment(p,us),lts)
lts
invertible?(p:P,ts:$): Boolean ==
toseInvertible?(p,ts)$regsetgcdpack
invertible?(p:P,ts:$): List BWT ==
toseInvertible?(p,ts)$regsetgcdpack
invertibleSet(p:P,ts:$): Split ==
toseInvertibleSet(p,ts)$regsetgcdpack
lastSubResultant(p1:P,p2:P,ts:$): List PWT ==
toseLastSubResultant(p1,p2,ts)$regsetgcdpack
squareFreePart(p:P, ts: $): List PWT ==
toseSquareFreePart(p,ts)$regsetgcdpack
intersect(p:P, ts: $): List($) ==
decompose([p], [ts], false, false)$regsetdecomppack
intersect(lp: LP, lts: List($)): List($) ==
decompose(lp, lts, false, false)$regsetdecomppack
-- SOLVE in the regular zero sense
-- and DO NOT PRINT info
decompose(p:P, ts: $): List($) ==
decompose([p], [ts], true, false)$regsetdecomppack
decompose(lp: LP, lts: List($)): List($) ==
decompose(lp, lts, true, false)$regsetdecomppack
-- SOLVE in the closure sense
-- and DO NOT PRINT info
zeroSetSplit(lp:List(P)) == zeroSetSplit(lp,true,false)
-- by default SOLVE in the closure sense
-- and DO NOT PRINT info
zeroSetSplit(lp:List(P), clos?: B) == zeroSetSplit(lp,clos?, false)
-- DO NOT PRINT info
zeroSetSplit(lp:List(P), clos?: B, info?: B) ==
-- if clos? then SOLVE in the closure sense
-- if info? then PRINT info
-- by default USE hash-tables
-- and PREPROCESS the input system
zeroSetSplit(lp,true,clos?,info?,true)
zeroSetSplit(lp:List(P),hash?:B,clos?:B,info?:B,prep?:B) ==
-- if hash? then USE hash-tables
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
-- if prep? then PREPROCESS the input system
if hash?
then
s1, s2, s3, dom1, dom2, dom3: String
e: String := empty()$String
if info? then (s1,s2,s3) := ("w","g","i") else (s1,s2,s3) := (e,e,e)
if info?
then
(dom1, dom2, dom3) := _
("QCMPACK", "REGSETGCD: Gcd", "REGSETGCD: Inv Set")
else
(dom1, dom2, dom3) := (e,e,e)
startTable!(s1,"W",dom1)$quasicomppack
startTableGcd!(s2,"G",dom2)$regsetgcdpack
startTableInvSet!(s3,"I",dom3)$regsetgcdpack
lts := internalZeroSetSplit(lp,clos?,info?,prep?)
if hash?
then
stopTable!()$quasicomppack
stopTableGcd!()$regsetgcdpack
stopTableInvSet!()$regsetgcdpack
lts
internalZeroSetSplit(lp:LP,clos?:B,info?:B,prep?:B) ==
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
-- if prep? then PREPROCESS the input system
if prep?
then
pp := pre_process(lp,clos?,info?)
lp := pp.val
lts := pp.towers
else
ts: $ := [[]]
lts := [ts]
lp := remove(zero?, lp)
any?(ground?, lp) => []
empty? lp => lts
empty? lts => lts
lp := sort(infRittWu?,lp)
clos? => decompose(lp,lts, clos?, info?)$regsetdecomppack
-- IN DIM > 0 with clos? the following is false ...
for p in lp repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lts
largeSystem?(lp:LP): Boolean ==
-- Gonnet and Gerdt and not Wu-Wang.2
#lp > 16 => true
#lp < 13 => false
lts: List($) := []
(#lp :: Z - numberOfVariables(lp,lts)$regsetdecomppack :: Z) > 3
smallSystem?(lp:LP): Boolean ==
-- neural, Vermeer, Liu, and not f-633 and not Hairer-2
#lp < 5
mediumSystem?(lp:LP): Boolean ==
-- f-633 and not Hairer-2
lts: List($) := []
(numberOfVariables(lp,lts)$regsetdecomppack :: Z - #lp :: Z) < 2
lin?(p:P):Boolean == ground?(init(p)) and (mdeg(p) = 1)
pre_process(lp:LP,clos?:B,info?:B): Record(val: LP, towers: Split) ==
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
ts: $ := [[]];
lts: Split := [ts]
empty? lp => [lp,lts]
lp1: List P := []
lp2: List P := []
for p in lp repeat
ground? (tail p) => lp1 := cons(p, lp1)
lp2 := cons(p, lp2)
lts: Split := decompose(lp1,[ts],clos?,info?)$regsetdecomppack
probablyZeroDim?(lp)$polsetpack =>
largeSystem?(lp) => return [lp2,lts]
if #lp > 7
then
-- Butcher (8,8) + Wu-Wang.2 (13,16)
lp2 := crushedSet(lp2)$polsetpack
lp2 := remove(zero?,lp2)
any?(ground?,lp2) => return [lp2, lts]
lp3 := [p for p in lp2 | lin?(p)]
lp4 := [p for p in lp2 | not lin?(p)]
if clos?
then
lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
else
lp4 := sort(infRittWu?,lp4)
for p in lp4 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := lp3
else
lp2 := crushedSet(lp2)$polsetpack
lp2 := remove(zero?,lp2)
any?(ground?,lp2) => return [lp2, lts]
if clos?
then
lts := decompose(lp2,lts, clos?, info?)$regsetdecomppack
else
lp2 := sort(infRittWu?,lp2)
for p in lp2 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := []
return [lp2,lts]
smallSystem?(lp) => [lp2,lts]
mediumSystem?(lp) => [crushedSet(lp2)$polsetpack,lts]
lp3 := [p for p in lp2 | lin?(p)]
lp4 := [p for p in lp2 | not lin?(p)]
if clos?
then
lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
else
lp4 := sort(infRittWu?,lp4)
for p in lp4 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
if clos?
then
lts := decompose(lp3,lts, clos?, info?)$regsetdecomppack
else
lp3 := sort(infRittWu?,lp3)
for p in lp3 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := []
return [lp2,lts]
|