This file is indexed.

/usr/share/axiom-20170501/src/algebra/REP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
)abbrev package REP RadicalEigenPackage
++ Author: P.Gianni
++ Date Created: Summer 1987
++ Date Last Updated: October 1992
++ Description:
++ Package for the computation of eigenvalues and eigenvectors.
++ This package works for matrices with coefficients which are
++ rational functions over the integers.
++ (see \spadtype{Fraction Polynomial Integer}).
++ The eigenvalues and eigenvectors are expressed in terms of radicals.

RadicalEigenPackage() : SIG == CODE where

  R     ==> Integer
  P     ==> Polynomial R
  F     ==> Fraction P
  RE    ==> Expression R
  SE    ==> Symbol()
  M     ==> Matrix(F)
  MRE   ==> Matrix(RE)
  ST    ==> SuchThat(SE,P)
  NNI   ==> NonNegativeInteger

  EigenForm    ==> Record(eigval:Union(F,ST),eigmult:NNI,eigvec:List(M))
  RadicalForm  ==> Record(radval:RE,radmult:Integer,radvect:List(MRE))

  SIG ==> with

    radicalEigenvectors : M -> List(RadicalForm)
      ++ radicalEigenvectors(m) computes
      ++ the eigenvalues and the corresponding eigenvectors of the
      ++ matrix m;
      ++ when possible, values are expressed in terms of radicals.

    radicalEigenvector : (RE,M) -> List(MRE)
      ++ radicalEigenvector(c,m) computes the eigenvector(s) of the
      ++ matrix m corresponding to the eigenvalue c;
      ++ when possible, values are
      ++ expressed in terms of radicals.

    radicalEigenvalues : M -> List RE
      ++ radicalEigenvalues(m) computes the eigenvalues of the matrix m;
      ++ when possible, the eigenvalues are expressed in terms of radicals.

    eigenMatrix : M -> Union(MRE,"failed")
      ++ eigenMatrix(m) returns the matrix b
      ++ such that \spad{b*m*(inverse b)} is diagonal,
      ++ or "failed" if no such b exists.

    normalise : MRE -> MRE
      ++ normalise(v) returns the column
      ++ vector v
      ++ divided by its euclidean norm;
      ++ when possible, the vector v is expressed in terms of radicals.

    gramschmidt : List(MRE) -> List(MRE)
      ++ gramschmidt(lv) converts the list of column vectors lv into
      ++ a set of orthogonal column vectors
      ++ of euclidean length 1 using the Gram-Schmidt algorithm.

    orthonormalBasis : M -> List(MRE)
      ++ orthonormalBasis(m)  returns the orthogonal matrix b such that
      ++ \spad{b*m*(inverse b)} is diagonal.
      ++ Error: if m is not a symmetric matrix.

  CODE ==> add

     PI       ==> PositiveInteger
     RSP := RadicalSolvePackage R
     import EigenPackage R

                 ----  Local  Functions  ----
     evalvect         :  (M,RE,SE)  ->  MRE
     innerprod        :   (MRE,MRE)   ->  RE

         ----  eval a vector of F in a radical expression  ----
     evalvect(vect:M,alg:RE,x:SE) : MRE ==
       n:=nrows vect
       xx:=kernel(x)$Kernel(RE)
       w:MRE:=zero(n,1)$MRE
       for i in 1..n repeat
         v:=eval(vect(i,1) :: RE,xx,alg)
         setelt(w,i,1,v)
       w
                      ---- inner product ----
     innerprod(v1:MRE,v2:MRE): RE == (((transpose v1)* v2)::MRE)(1,1)

                 ----  normalization of a vector  ----
     normalise(v:MRE) : MRE ==
       normv:RE := sqrt(innerprod(v,v))
       normv = 0$RE => v
       (1/normv)*v

                ----  Eigenvalues of the matrix A  ----
     radicalEigenvalues(A:M): List(RE) ==
       x:SE :=new()$SE
       pol:= characteristicPolynomial(A,x) :: F
       radicalRoots(pol,x)$RSP

      ----  Eigenvectors belonging to a given eigenvalue  ----
            ----  expressed in terms of radicals ----
     radicalEigenvector(alpha:RE,A:M) : List(MRE) ==
       n:=nrows A
       B:MRE := zero(n,n)$MRE
       for i in 1..n repeat
         for j in 1..n repeat B(i,j):=(A(i,j))::RE
         B(i,i):= B(i,i) - alpha
       [v::MRE  for v in nullSpace B]

             ----  eigenvectors and eigenvalues  ----
     radicalEigenvectors(A:M) : List(RadicalForm) ==
       leig:List EigenForm := eigenvectors A
       n:=nrows A
       sln:List RadicalForm := empty()
       veclist: List MRE
       for eig in leig repeat
         eig.eigval case F =>
           veclist := empty()
           for ll in eig.eigvec repeat
             m:MRE:=zero(n,1)
             for i in 1..n repeat m(i,1):=(ll(i,1))::RE
             veclist:=cons(m,veclist)
           sln:=cons([(eig.eigval)::F::RE,eig.eigmult,veclist]$RadicalForm,sln)
         sym := eig.eigval :: ST
         xx:= lhs sym
         lval : List RE := radicalRoots((rhs sym) :: F ,xx)$RSP
         for alg in lval repeat
           nsl:=[alg,eig.eigmult,
                 [evalvect(ep,alg,xx) for ep in eig.eigvec]]$RadicalForm
           sln:=cons(nsl,sln)
       sln

            ----  orthonormalization of a list of vectors  ----
                  ----  Grahm - Schmidt process  ----

     gramschmidt(lvect:List(MRE)) : List(MRE) ==
       lvect=[]  => []
       v:=lvect.first
       n := nrows v
       RMR:=RectangularMatrix(n:PI,1,RE)
       orth:List(MRE):=[(normalise v)]
       for v in lvect.rest repeat
         pol:=((v:RMR)-(+/[(innerprod(w,v)*w):RMR for w in orth])):MRE
         orth:=cons(normalise pol,orth)
       orth


              ----  The matrix of eigenvectors  ----

     eigenMatrix(A:M) : Union(MRE,"failed") ==
       lef:List(MRE):=[:eiv.radvect  for eiv in radicalEigenvectors(A)]
       n:=nrows A
       #lef <n => "failed"
       d:MRE:=copy(lef.first)
       for v in lef.rest repeat d:=(horizConcat(d,v))::MRE
       d

         ----  orthogonal basis for a symmetric matrix  ----

     orthonormalBasis(A:M):List(MRE) ==
       ^symmetric?(A) => error "the matrix is not symmetric"
       basis:List(MRE):=[]
       lvec:List(MRE) := []
       alglist:List(RadicalForm):=radicalEigenvectors(A)
       n:=nrows A
       for alterm in alglist repeat
         if (lvec:=alterm.radvect)=[] then error "sorry "
         if #(lvec)>1  then
           lvec:= gramschmidt(lvec)
           basis:=[:lvec,:basis]
         else basis:=[normalise(lvec.first),:basis]
       basis