This file is indexed.

/usr/share/axiom-20170501/src/algebra/REP1.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
)abbrev package REP1 RepresentationPackage1
++ Authors: Holger Gollan, Johannes Grabmeier, Thorsten Werther
++ Date Created: 12 September 1987
++ Date Last Updated: 24 May 1991
++ References:
++ Jame81 The Representation Theory of the Symmetric Group
++ Grab87 The Evaluation of Irreducible Polynomial Representations
++ Goll90 Algorithms in Representation Theory 
++ Description: 
++ RepresentationPackage1 provides functions for representation theory
++ for finite groups and algebras.
++ The package creates permutation representations and uses tensor products
++ and its symmetric and antisymmetric components to create new
++ representations of larger degree from given ones.
++ Note that instead of having parameters from \spadtype{Permutation}
++ this package allows list notation of permutations as well:
++ for example \spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.
 
RepresentationPackage1(R) : SIG == CODE where 
  R : Ring

  OF    ==> OutputForm
  NNI   ==> NonNegativeInteger
  PI    ==> PositiveInteger
  I     ==> Integer
  L     ==> List
  M     ==> Matrix
  P     ==> Polynomial
  SM    ==> SquareMatrix
  V     ==> Vector
  ICF   ==> IntegerCombinatoricFunctions Integer
  SGCF  ==> SymmetricGroupCombinatoricFunctions
  PERM  ==> Permutation
 
  SIG ==> with
 
     if R has commutative("*") then

       antisymmetricTensors : (M R,PI) ->  M R
         ++ antisymmetricTensors(a,n) applies to the square matrix
         ++ a the irreducible, polynomial representation of the
         ++ general linear group GLm, where m is the number of
         ++ rows of a, which corresponds to the partition
         ++ (1,1,...,1,0,0,...,0) of n.
         ++ Error: if n is greater than m.
         ++ Note that this corresponds to the symmetrization of the 
         ++ representation with the sign representation of the symmetric group
         ++ Sn. The carrier spaces of the representation are the antisymmetric
         ++ tensors of the n-fold tensor product.
         ++
         ++X t1:=matrix [[a,b,c],[d,e,f]]
         ++X antisymmetricTensors(t1,2)

     if R has commutative("*") then

       antisymmetricTensors : (L M R, PI) -> L M R
         ++ antisymmetricTensors(la,n) applies to each 
         ++ m-by-m square matrix in
         ++ the list la the irreducible, polynomial representation
         ++ of the general linear group GLm 
         ++ which corresponds
         ++ to the partition (1,1,...,1,0,0,...,0) of n.
         ++ Error: if n is greater than m.
         ++ Note that this corresponds to the symmetrization of the 
         ++ representation with the sign representation of the symmetric group
         ++ Sn. The carrier spaces of the representation are the antisymmetric
         ++ tensors of the n-fold tensor product.

     createGenericMatrix : NNI -> M P R
       ++ createGenericMatrix(m) creates a square matrix of dimension k
       ++ whose entry at the i-th row and j-th column is the
       ++ indeterminate x[i,j] (double subscripted).

     symmetricTensors : (M R, PI) -> M R
       ++ symmetricTensors(a,n) applies to the m-by-m 
       ++ square matrix a the
       ++ irreducible, polynomial representation of the general linear
       ++ group GLm
       ++ which corresponds to the partition (n,0,...,0) of n.
       ++ Error: if a is not a square matrix.
       ++ Note that this corresponds to the symmetrization of the 
       ++ representation with the trivial representation of the symmetric 
       ++ group Sn.
       ++ The carrier spaces of the representation are the symmetric
       ++ tensors of the n-fold tensor product.

     symmetricTensors : (L M R, PI)  ->  L M R
       ++ symmetricTensors(la,n) applies to each m-by-m square matrix in the
       ++ list la the irreducible, polynomial representation
       ++ of the general linear group GLm
       ++ which corresponds
       ++ to the partition (n,0,...,0) of n.
       ++ Error: if the matrices in la are not square matrices.
       ++ Note that this corresponds to the symmetrization of the 
       ++ representation with the trivial representation of the symmetric 
       ++ group Sn.
       ++ The carrier spaces of the representation are the symmetric
       ++ tensors of the n-fold tensor product.

     tensorProduct : (M R, M R) -> M R
       ++ tensorProduct(a,b) calculates the Kronecker product
       ++ of the matrices a and b.
       ++ Note that if each matrix corresponds to a group representation
       ++ (repr. of  generators) of one group, then these matrices
       ++ correspond to the tensor product of the two representations.

     tensorProduct : (L M R, L M R) -> L M R
       ++ tensorProduct([a1,...,ak],[b1,...,bk]) calculates the list of
       ++ Kronecker products of the matrices ai and bi
       ++ for {1 <= i <= k}.
       ++ Note that if each list of matrices corresponds to a group 
       ++ representation (repr. of generators) of one group, then these 
       ++ matrices correspond to the tensor product of the two representations.

     tensorProduct : M R -> M R
       ++ tensorProduct(a) calculates the Kronecker product
       ++ of the matrix a with itself.

     tensorProduct : L M R -> L M R
       ++ tensorProduct([a1,...ak]) calculates the list of
       ++ Kronecker products of each matrix ai with itself
       ++ for {1 <= i <= k}.
       ++ Note that if the list of matrices corresponds to a group 
       ++ representation (repr. of generators) of one group, then these 
       ++ matrices correspond to the tensor product of the representation 
       ++ with itself.

     permutationRepresentation : (PERM I, I) -> M I
       ++ permutationRepresentation(pi,n) returns the matrix
       ++ (deltai,pi(i)) (Kronecker delta) for a permutation
       ++ pi of {1,2,...,n}.

     permutationRepresentation : L I -> M I
       ++ permutationRepresentation(pi,n) returns the matrix
       ++ (deltai,pi(i)) (Kronecker delta) if the permutation
       ++ pi is in list notation and permutes {1,2,...,n}.

     permutationRepresentation : (L PERM I, I) -> L M I
       ++ permutationRepresentation([pi1,...,pik],n) returns the list
       ++ of matrices [(deltai,pi1(i)),...,(deltai,pik(i))]
       ++ (Kronecker delta) for the permutations pi1,...,pik
       ++ of {1,2,...,n}.

     permutationRepresentation : L L I -> L M I
       ++ permutationRepresentation([pi1,...,pik],n) returns the list
       ++ of matrices [(deltai,pi1(i)),...,(deltai,pik(i))]
       ++ if the permutations pi1,...,pik are in 
       ++ list notation and are permuting {1,2,...,n}.
 
  CODE ==> add
 
     -- import of domains and packages
 
     import OutputForm
 
     -- declaration of local functions:
 
     calcCoef : (L I, M I) -> I
       -- calcCoef(beta,C) calculates the term
       -- |S(beta) gamma S(alpha)| / |S(beta)|
 
     invContent : L I -> V I
       -- invContent(alpha) calculates the weak monoton function f with
       -- f : m -> n with invContent alpha. f is stored in the returned
       -- vector
 
     -- definition of local functions
 
     calcCoef(beta,C) ==
       prod : I := 1
       for i in 1..maxIndex beta repeat
         prod := prod * multinomial(beta(i), entries row(C,i))$ICF
       prod
 
     invContent(alpha) ==
       n : NNI := (+/alpha)::NNI
       f : V I  := new(n,0)
       i : NNI := 1
       j : I   := - 1
       for og in alpha repeat
         j := j + 1
         for k in 1..og repeat
           f(i) := j
           i := i + 1
       f
 
     -- exported functions:
 
     if R has commutative("*") then

       antisymmetricTensors ( a : M R , k : PI ) ==
 
         nr      : NNI   := nrows a
	 nc     : NNI   := ncols a
         k = 1 => a
         k > min(nr,nc) =>
           error("second parameter for antisymmetricTensors is too large")
         mr     :   I   := binomial(nr,k)$ICF
         mc     :   I   := binomial(nc,k)$ICF	 
         ilr    : L L I   := [subSet(nr,k,i)$SGCF for i in 0..mr-1]
         ilc    : L L I   := [subSet(nc,k,i)$SGCF for i in 0..mc-1]	 
         b      :  M R   := zero(mr::NNI, mc::NNI)
         for i in 1..mr repeat
           for j in 1..mc repeat
             c : M R := zero(k,k)
             lr: L I := ilr.i
             lt: L I := ilc.j
             for  r in 1..k repeat
               for t in 1..k repeat
                 rr : I := lr.r
                 tt : I := lt.t
                 --c.r.t := a.(1+rr).(1+tt)
                 setelt(c,r,t,elt(a, 1+rr, 1+tt))
             setelt(b, i, j, determinant c)
         b
 
     if R has commutative("*") then

       antisymmetricTensors(la: L M R, k: PI) ==
         [antisymmetricTensors(ma,k) for ma in la]
 
     symmetricTensors (a : M R, n : PI) ==
       m : NNI := nrows a
       m ^= ncols a =>
         error("Input to symmetricTensors is not a square matrix")
       n = 1 => a
       dim : NNI := (binomial(m+n-1,n)$ICF)::NNI
       c : M R := new(dim,dim,0)
       f : V I := new(n,0)
       g : V I := new(n,0)
       nullMatrix : M I := new(1,1,0)
       colemanMatrix : M I
       for i in 1..dim repeat
         -- unrankImproperPartitions1 starts counting from 0
         alpha := unrankImproperPartitions1(n,m,i-1)$SGCF
         f := invContent(alpha)
         for j in 1..dim repeat
           -- unrankImproperPartitions1 starts counting from 0
           beta := unrankImproperPartitions1(n,m,j-1)$SGCF
           g := invContent(beta)
           colemanMatrix := nextColeman(alpha,beta,nullMatrix)$SGCF
           while colemanMatrix ^= nullMatrix repeat
             gamma := inverseColeman(alpha,beta,colemanMatrix)$SGCF
             help : R := calcCoef(beta,colemanMatrix)::R
             for k in 1..n repeat
               help := help * a( (1+f k)::NNI, (1+g(gamma k))::NNI )
             c(i,j) := c(i,j) + help
             colemanMatrix := nextColeman(alpha,beta,colemanMatrix)$SGCF
           -- end of while
         -- end of j-loop
       -- end of i-loop
       c
 
     symmetricTensors(la : L M R, k : PI) ==
       [symmetricTensors (ma, k) for ma in la]
 
     tensorProduct(a: M R, b: M R) ==
       n      : NNI := nrows a
       m      : NNI := nrows b
       nc     : NNI := ncols a
       mc     : NNI := ncols b
       c      : M R   := zero(n * m, nc * mc)
       indexr : NNI := 1                             --   row index
       for i in 1..n repeat
          for k in 1..m repeat
             indexc : NNI := 1                       --   column index
             for j in 1..nc repeat
                for l in 1..mc repeat
                   c(indexr,indexc) := a(i,j) * b(k,l)
                   indexc          := indexc + 1
             indexr := indexr + 1
       c
 
     tensorProduct (la: L M R, lb: L M R) ==
       [tensorProduct(la.i, lb.i) for i in 1..maxIndex la]
 
     tensorProduct(a : M R) == tensorProduct(a, a)
 
     tensorProduct(la : L M R) ==
       tensorProduct(la :: L M R, la :: L M R)
 
     permutationRepresentation (p : PERM I, n : I) ==
       -- permutations are assumed to permute {1,2,...,n}
       a : M I := zero(n :: NNI, n :: NNI)
       for i in 1..n repeat
          a(eval(p,i)$(PERM I),i) := 1
       a
 
     permutationRepresentation (p : L I) ==
       -- permutations are assumed to permute {1,2,...,n}
       n : I := #p
       a : M I := zero(n::NNI, n::NNI)
       for i in 1..n repeat
          a(p.i,i) := 1
       a
 
     permutationRepresentation(listperm : L PERM I, n : I) ==
       -- permutations are assumed to permute {1,2,...,n}
       [permutationRepresentation(perm, n) for perm in listperm]
 
     permutationRepresentation (listperm : L L I) ==
       -- permutations are assumed to permute {1,2,...,n}
       [permutationRepresentation perm for perm in listperm]
 
     createGenericMatrix(m) ==
       res : M P R := new(m,m,0$(P R))
       for i in 1..m repeat
         for j in 1..m repeat
            iof : OF := coerce(i)$Integer
            jof : OF := coerce(j)$Integer
            le : L OF := cons(iof,list jof)
            sy : Symbol := subscript(x::Symbol, le)$Symbol
            res(i,j) := (sy :: P R)
       res