/usr/share/axiom-20170501/src/algebra/REP2.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | )abbrev package REP2 RepresentationPackage2
++ Authors: Holger Gollan, Johannes Grabmeier
++ Date Created: 10 September 1987
++ Date Last Updated: 20 August 1990
++ Reference:
++ R. A. Parker: The Computer Calculation of Modular Characters
++ (The Meat-Axe), in M. D. Atkinson (Ed.), Computational Group Theory
++ Academic Press, Inc., London 1984
++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and
++ their Realization in the Computer Algebra System Scratchpad,
++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23.
++ Description:
++ RepresentationPackage2 provides functions for working with
++ modular representations of finite groups and algebra.
++ The routines in this package are created, using ideas of R. Parker,
++ (the meat-Axe) to get smaller representations from bigger ones,
++ finding sub- and factormodules, or to show, that such the
++ representations are irreducible.
++ Note that most functions are randomized functions of Las Vegas type
++ every answer is correct, but with small probability
++ the algorithm fails to get an answer.
RepresentationPackage2(R) : SIG == CODE where
R : Ring
OF ==> OutputForm
I ==> Integer
L ==> List
SM ==> SquareMatrix
M ==> Matrix
NNI ==> NonNegativeInteger
V ==> Vector
PI ==> PositiveInteger
B ==> Boolean
RADIX ==> RadixExpansion
SIG ==> with
completeEchelonBasis : V V R -> M R
++ completeEchelonBasis(lv) completes the basis lv assumed
++ to be in echelon form of a subspace of R**n (n the length
++ of all the vectors in lv with unit vectors to a basis of
++ R**n. It is assumed that the argument is not an empty
++ vector and that it is not the basis of the 0-subspace.
++ Note that the rows of the result correspond to the vectors
++ of the basis.
createRandomElement : (L M R, M R) -> M R
++ createRandomElement(aG,x) creates a random element of the group
++ algebra generated by aG.
if R has EuclideanDomain then -- using rowEchelon
cyclicSubmodule : (L M R, V R) -> V V R
++ cyclicSubmodule(lm,v) generates a basis as follows.
++ It is assumed that the size n of the vector equals the number
++ of rows and columns of the matrices. Then the matrices generate
++ a subalgebra, say \spad{A}, of the algebra of all square matrices of
++ dimension n. V R is an \spad{A}-module in the natural way.
++ cyclicSubmodule(lm,v) generates the R-Basis of Av as
++ described in section 6 of R. A. Parker's "The Meat-Axe".
++ Note that in contrast to the description in "The Meat-Axe" and to
++ standardBasisOfCyclicSubmodule the result is in echelon form.
standardBasisOfCyclicSubmodule : (L M R, V R) -> M R
++ standardBasisOfCyclicSubmodule(lm,v) returns a matrix as follows.
++ It is assumed that the size n of the vector equals the number
++ of rows and columns of the matrices. Then the matrices generate
++ a subalgebra, say \spad{A},
++ of the algebra of all square matrices of
++ dimension n. V R is an \spad{A}-module in the natural way.
++ standardBasisOfCyclicSubmodule(lm,v) calculates a matrix whose
++ non-zero column vectors are the R-Basis of Av achieved
++ in the way as described in section 6
++ of R. A. Parker's "The Meat-Axe".
++ Note that in contrast to cyclicSubmodule, the result is not
++ in echelon form.
if R has Field then -- only because of inverse in SM
areEquivalent? : (L M R, L M R, B, I) -> M R
++ areEquivalent?(aG0,aG1,randomelements,numberOfTries) tests
++ whether the two lists of matrices, all assumed of same
++ square shape, can be simultaneously conjugated by a non-singular
++ matrix. If these matrices represent the same group generators,
++ the representations are equivalent.
++ The algorithm tries
++ numberOfTries times to create elements in the
++ generated algebras in the same fashion. If their ranks differ,
++ they are not equivalent. If an
++ isomorphism is assumed, then
++ the kernel of an element of the first algebra
++ is mapped to the kernel of the corresponding element in the
++ second algebra. Now consider the one-dimensional ones.
++ If they generate the whole space (for example, irreducibility !)
++ we use standardBasisOfCyclicSubmodule to create the
++ only possible transition matrix. The method checks whether the
++ matrix conjugates all corresponding matrices from aGi.
++ The way to choose the singular matrices is as in meatAxe.
++ If the two representations are equivalent, this routine
++ returns the transformation matrix TM with
++ aG0.i * TM = TM * aG1.i for all i. If the representations
++ are not equivalent, a small 0-matrix is returned.
++ Note that the case
++ with different sets of group generators cannot be handled.
areEquivalent? : (L M R, L M R) -> M R
++ areEquivalent?(aG0,aG1) calls areEquivalent?(aG0,aG1,true,25).
++ Note that the choice of 25 was rather arbitrary.
areEquivalent? : (L M R, L M R, I) -> M R
++ areEquivalent?(aG0,aG1,numberOfTries) calls
++ areEquivalent?(aG0,aG1,true,25).
++ Note that the choice of 25 was rather arbitrary.
isAbsolutelyIrreducible? : (L M R, I) -> B
++ isAbsolutelyIrreducible?(aG, numberOfTries) uses
++ Norton's irreducibility test to check for absolute
++ irreduciblity, assuming if a one-dimensional kernel is found.
++ As no field extension changes create "new" elements
++ in a one-dimensional space, the criterium stays true
++ for every extension. The method looks for one-dimensionals only
++ by creating random elements (no fingerprints) since
++ a run of meatAxe would have proved absolute irreducibility
++ anyway.
isAbsolutelyIrreducible? : L M R -> B
++ isAbsolutelyIrreducible?(aG) calls
++ isAbsolutelyIrreducible?(aG,25).
++ Note that the choice of 25 was rather arbitrary.
split : (L M R, V R) -> L L M R
++ split(aG, vector) returns a subalgebra \spad{A} of all
++ square matrix of dimension n as a list of list of matrices,
++ generated by the list of matrices aG, where n denotes both
++ the size of vector as well as the dimension of each of the
++ square matrices.
++ V R is an A-module in the natural way.
++ split(aG, vector) then checks whether the cyclic submodule
++ generated by vector is a proper submodule of V R.
++ If successful, it returns a two-element list, which contains
++ first the list of the representations of the submodule,
++ then the list of the representations of the factor module.
++ If the vector generates the whole module, a one-element list
++ of the old representation is given.
++ Note that a later version this should call the other split.
split: (L M R, V V R) -> L L M R
++ split(aG,submodule) uses a proper submodule of R**n
++ to create the representations of the submodule and of
++ the factor module.
if (R has Finite) and (R has Field) then
meatAxe : (L M R, B, I, I) -> L L M R
++ meatAxe(aG,randomElements,numberOfTries, maxTests) returns
++ a 2-list of representations as follows.
++ All matrices of argument aG are assumed to be square
++ and of equal size.
++ Then \spad{aG} generates a subalgebra, say \spad{A}, of the algebra
++ of all square matrices of dimension n. V R is an A-module
++ in the usual way.
++ meatAxe(aG,numberOfTries, maxTests) creates at most
++ numberOfTries random elements of the algebra, tests
++ them for singularity. If singular, it tries at most maxTests
++ elements of its kernel to generate a proper submodule.
++ If successful, a 2-list is returned: first, a list
++ containing first the list of the
++ representations of the submodule, then a list of the
++ representations of the factor module.
++ Otherwise, if we know that all the kernel is already
++ scanned, Norton's irreducibility test can be used either
++ to prove irreducibility or to find the splitting.
++ If randomElements is false, the first 6 tries
++ use Parker's fingerprints.
meatAxe : L M R -> L L M R
++ meatAxe(aG) calls meatAxe(aG,false,25,7) returns
++ a 2-list of representations as follows.
++ All matrices of argument \spad{aG} are assumed to be square
++ and of
++ equal size. Then \spad{aG} generates a subalgebra,
++ say \spad{A}, of the algebra
++ of all square matrices of dimension n. V R is an A-module
++ in the usual way.
++ meatAxe(aG) creates at most 25 random elements
++ of the algebra, tests
++ them for singularity. If singular, it tries at most 7
++ elements of its kernel to generate a proper submodule.
++ If successful a list which contains first the list of the
++ representations of the submodule, then a list of the
++ representations of the factor module is returned.
++ Otherwise, if we know that all the kernel is already
++ scanned, Norton's irreducibility test can be used either
++ to prove irreducibility or to find the splitting.
++ Notes: the first 6 tries use Parker's fingerprints.
++ Also, 7 covers the case of three-dimensional kernels over
++ the field with 2 elements.
meatAxe: (L M R, B) -> L L M R
++ meatAxe(aG, randomElements) calls meatAxe(aG,false,6,7),
++ only using Parker's fingerprints, if randomElemnts is false.
++ If it is true, it calls meatAxe(aG,true,25,7),
++ only using random elements.
++ Note that the choice of 25 was rather arbitrary.
++ Also, 7 covers the case of three-dimensional kernels over the field
++ with 2 elements.
meatAxe : (L M R, PI) -> L L M R
++ meatAxe(aG, numberOfTries) calls
++ meatAxe(aG,true,numberOfTries,7).
++ Notes: 7 covers the case of three-dimensional
++ kernels over the field with 2 elements.
scanOneDimSubspaces: (L V R, I) -> V R
++ scanOneDimSubspaces(basis,n) gives a canonical representative
++ of the n-th one-dimensional subspace of the vector space
++ generated by the elements of basis, all from R**n.
++ The coefficients of the representative are of shape
++ (0,...,0,1,*,...,*), * in R. If the size of R
++ is q, then there are (q**n-1)/(q-1) of them.
++ We first reduce n modulo this number, then find the
++ largest i such that +/[q**i for i in 0..i-1] <= n.
++ Subtracting this sum of powers from n results in an
++ i-digit number to basis q. This fills the positions of the
++ stars.
-- would prefer to have (V V R,.... but nullSpace results
-- in L V R
CODE ==> add
-- import of domain and packages
import OutputForm
-- declarations and definitions of local variables and
-- local function
-- blockMultiply(a,b,li,n) assumes that a has n columns
-- and b has n rows, li is a sublist of the rows of a and
-- a sublist of the columns of b. The result is the
-- multiplication of the (li x n) part of a with the
-- (n x li) part of b. We need this, because just matrix
-- multiplying the parts would require extra storage.
blockMultiply: (M R, M R, L I, I) -> M R
blockMultiply(a, b, li, n) ==
matrix([[ +/[a(i,s) * b(s,j) for s in 1..n ] _
for j in li ] for i in li])
-- is local, because one should know all the results for smaller i
fingerPrint: (NNI, M R, M R, M R) -> M R
fingerPrint (i : NNI, a : M R, b : M R, x :M R) ==
-- i > 2 only gives the correct result if the value of x from
-- the parameter list equals the result of fingerprint(i-1,...)
(i::PI) = 1 => x := a + b + a*b
(i::PI) = 2 => x := (x + a*b)*b
(i::PI) = 3 => x := a + b*x
(i::PI) = 4 => x := x + b
(i::PI) = 5 => x := x + a*b
(i::PI) = 6 => x := x - a + b*a
error "Sorry, but there are only 6 fingerprints!"
x
completeEchelonBasis(basis) ==
dimensionOfSubmodule : NNI := #basis
n : NNI := # basis.1
indexOfVectorToBeScanned : NNI := 1
row : NNI := dimensionOfSubmodule
completedBasis : M R := zero(n, n)
for i in 1..dimensionOfSubmodule repeat
completedBasis := setRow_!(completedBasis, i, basis.i)
if #basis <= n then
newStart : NNI := 1
for j in 1..n
while indexOfVectorToBeScanned <= dimensionOfSubmodule repeat
if basis.indexOfVectorToBeScanned.j = 0 then
completedBasis(1+row,j) := 1 --put unit vector into basis
row := row + 1
else
indexOfVectorToBeScanned := indexOfVectorToBeScanned + 1
newStart : NNI := j + 1
for j in newStart..n repeat
completedBasis(j,j) := 1 --put unit vector into basis
completedBasis
createRandomElement(aG,algElt) ==
numberOfGenerators : NNI := #aG
-- randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
algElt := algElt * aG.randomIndex
-- randomIndxElement := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
algElt + aG.randomIndex
if R has EuclideanDomain then
cyclicSubmodule (lm : L M R, v : V R) ==
basis : M R := rowEchelon matrix list entries v
-- normalizing the vector
-- all these elements lie in the submodule generated by v
furtherElts : L V R := [(lm.i*v)::V R for i in 1..maxIndex lm]
--furtherElts has elements of the generated submodule. It will
--will be checked whether they are in the span of the vectors
--computed so far. Of course we stop if we have got the whole
--space.
while (^null furtherElts) and (nrows basis < #v) repeat
w : V R := first furtherElts
nextVector : M R := matrix list entries w -- normalizing the vector
-- will the rank change if we add this nextVector
-- to the basis so far computed?
addedToBasis : M R := vertConcat(basis, nextVector)
if rank addedToBasis ^= nrows basis then
basis := rowEchelon addedToBasis -- add vector w to basis
updateFurtherElts : L V R := _
[(lm.i*w)::V R for i in 1..maxIndex lm]
furtherElts := append (rest furtherElts, updateFurtherElts)
else
-- the vector w lies in the span of matrix, no updating
-- of the basis
furtherElts := rest furtherElts
vector [row(basis, i) for i in 1..maxRowIndex basis]
standardBasisOfCyclicSubmodule (lm : L M R, v : V R) ==
dim : NNI := #v
standardBasis : L L R := list(entries v)
basis : M R := rowEchelon matrix list entries v
-- normalizing the vector
-- all these elements lie in the submodule generated by v
furtherElts : L V R := [(lm.i*v)::V R for i in 1..maxIndex lm]
--furtherElts has elements of the generated submodule. It will
--will be checked whether they are in the span of the vectors
--computed so far. Of course we stop if we have got the whole
--space.
while (^null furtherElts) and (nrows basis < #v) repeat
w : V R := first furtherElts
nextVector : M R := matrix list entries w -- normalizing the vector
-- will the rank change if we add this nextVector
-- to the basis so far computed?
addedToBasis : M R := vertConcat(basis, nextVector)
if rank addedToBasis ^= nrows basis then
standardBasis := cons(entries w, standardBasis)
basis := rowEchelon addedToBasis -- add vector w to basis
updateFurtherElts : L V R := _
[lm.i*w for i in 1..maxIndex lm]
furtherElts := append (rest furtherElts, updateFurtherElts)
else
-- the vector w lies in the span of matrix, therefore
-- no updating of matrix
furtherElts := rest furtherElts
transpose matrix standardBasis
if R has Field then -- only because of inverse in Matrix
-- as conditional local functions, *internal have to be here
splitInternal: (L M R, V R, B) -> L L M R
splitInternal(algebraGenerators : L M R, vector: V R,doSplitting? : B) ==
n : I := # vector -- R-rank of representation module =
-- degree of representation
submodule : V V R := cyclicSubmodule (algebraGenerators,vector)
rankOfSubmodule : I := # submodule -- R-Rank of submodule
submoduleRepresentation : L M R := nil()
factormoduleRepresentation : L M R := nil()
if n ^= rankOfSubmodule then
messagePrint " A proper cyclic submodule is found."
if doSplitting? then -- no else !!
submoduleIndices : L I := [i for i in 1..rankOfSubmodule]
factormoduleIndices : L I := [i for i in (1+rankOfSubmodule)..n]
transitionMatrix : M R := _
transpose completeEchelonBasis submodule
messagePrint " Transition matrix computed"
inverseTransitionMatrix : M R := _
autoCoerce(inverse transitionMatrix)$Union(M R,"failed")
messagePrint " The inverse of the transition matrix computed"
messagePrint " Now transform the matrices"
for i in 1..maxIndex algebraGenerators repeat
helpMatrix : M R := inverseTransitionMatrix * algebraGenerators.i
-- in order to not create extra space and regarding the fact
-- that we only want the two blocks in the main diagonal we
-- multiply with the aid of the local function blockMultiply
submoduleRepresentation := cons( blockMultiply( _
helpMatrix,transitionMatrix,submoduleIndices,n), _
submoduleRepresentation)
factormoduleRepresentation := cons( blockMultiply( _
helpMatrix,transitionMatrix,factormoduleIndices,n), _
factormoduleRepresentation)
[reverse submoduleRepresentation, reverse _
factormoduleRepresentation]
else -- represesentation is irreducible
messagePrint " The generated cyclic submodule was not proper"
[algebraGenerators]
irreducibilityTestInternal: (L M R, M R, B) -> L L M R
irreducibilityTestInternal(algebraGenerators,_
singularMatrix,split?) ==
algebraGeneratorsTranspose : L M R := [transpose _
algebraGenerators.j for j in 1..maxIndex algebraGenerators]
xt : M R := transpose singularMatrix
messagePrint _
" We know that all the cyclic submodules generated by all"
messagePrint _
" non-trivial element of the singular matrix under view are"
messagePrint _
" not proper, hence Norton's irreducibility test can be done:"
-- actually we only would need one (!) non-trivial element from
-- the kernel of xt, such an element must exist as the transpose
-- of a singular matrix is of course singular. Question: Can
-- we get it more easily from the kernel of x = singularMatrix?
kernel : L V R := nullSpace xt
result : L L M R := _
splitInternal(algebraGeneratorsTranspose,first kernel,split?)
if null rest result then -- this means first kernel generates
-- the whole module
if 1 = #kernel then
messagePrint " Representation is absolutely irreducible"
else
messagePrint " Representation is irreducible, but we don't know "
messagePrint " whether it is absolutely irreducible"
else
if split? then
messagePrint _
" Representation is not irreducible and it will be split:"
-- these are the dual representations, so calculate the
-- dual to get the desired result, "transpose inverse"
-- improvements??
for i in 1..maxIndex result repeat
for j in 1..maxIndex (result.i) repeat
mat : M R := result.i.j
result.i.j := _
transpose autoCoerce(inverse mat)$Union(M R,"failed")
else
messagePrint _
" Representation is not irreducible, use meatAxe to split"
-- if "split?" then dual representation interchange factor
-- and submodules, hence reverse
reverse result
-- exported functions for FiniteField-s.
areEquivalent? (aG0, aG1) ==
areEquivalent? (aG0, aG1, true, 25)
areEquivalent? (aG0, aG1, numberOfTries) ==
areEquivalent? (aG0, aG1, true, numberOfTries)
areEquivalent? (aG0, aG1, randomelements, numberOfTries) ==
result : B := false
transitionM : M R := zero(1, 1)
numberOfGenerators : NNI := #aG0
-- need a start value for creating random matrices:
-- if we switch to randomelements later, we take the last
-- fingerprint.
if randomelements then -- random should not be from I
--randomIndex : I := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x0 : M R := aG0.randomIndex
x1 : M R := aG1.randomIndex
n : NNI := #row(x0,1) -- degree of representation
foundResult : B := false
for i in 1..numberOfTries until foundResult repeat
-- try to create a non-singular element of the algebra
-- generated by "aG". If only two generators,
-- i < 7 and not "randomelements" use Parker's fingerprints
-- i >= 7 create random elements recursively:
-- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly
-- chosen elements form "aG".
if i = 7 then randomelements := true
if randomelements then
--randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x0 := x0 * aG0.randomIndex
x1 := x1 * aG1.randomIndex
--randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x0 := x0 + aG0.randomIndex
x1 := x1 + aG1.randomIndex
else
x0 := fingerPrint (i, aG0.0, aG0.1 ,x0)
x1 := fingerPrint (i, aG1.0, aG1.1 ,x1)
-- test singularity of x0 and x1
rk0 : NNI := rank x0
rk1 : NNI := rank x1
rk0 ^= rk1 =>
messagePrint "Dimensions of kernels differ"
foundResult := true
result := false
-- can assume dimensions are equal
rk0 ^= n - 1 =>
-- not of any use here if kernel not one-dimensional
if randomelements then
messagePrint "Random element in generated algebra does"
messagePrint " not have a one-dimensional kernel"
else
messagePrint "Fingerprint element in generated algebra does"
messagePrint " not have a one-dimensional kernel"
-- can assume dimensions are equal and equal to n-1
if randomelements then
messagePrint "Random element in generated algebra has"
messagePrint " one-dimensional kernel"
else
messagePrint "Fingerprint element in generated algebra has"
messagePrint " one-dimensional kernel"
kernel0 : L V R := nullSpace x0
kernel1 : L V R := nullSpace x1
baseChange0 : M R := standardBasisOfCyclicSubmodule(_
aG0,kernel0.1)
baseChange1 : M R := standardBasisOfCyclicSubmodule(_
aG1,kernel1.1)
(ncols baseChange0) ^= (ncols baseChange1) =>
messagePrint " Dimensions of generated cyclic submodules differ"
foundResult := true
result := false
-- can assume that dimensions of cyclic submodules are equal
(ncols baseChange0) = n => -- full dimension
transitionM := baseChange0 * _
autoCoerce(inverse baseChange1)$Union(M R,"failed")
foundResult := true
result := true
for j in 1..numberOfGenerators while result repeat
if (aG0.j*transitionM) ^= (transitionM*aG1.j) then
result := false
transitionM := zero(1 ,1)
messagePrint _
" There is no isomorphism, as the only possible one"
messagePrint " fails to do the necessary base change"
-- can assume that dimensions of cyclic submodules are not "n"
messagePrint _
" Generated cyclic submodules have equal, but not full"
messagePrint " dimension, hence we can not draw any conclusion"
-- here ends the for-loop
if not foundResult then
messagePrint " "
messagePrint "Can neither prove equivalence nor inequivalence."
messagePrint " Try again."
else
if result then
messagePrint " "
messagePrint "Representations are equivalent."
else
messagePrint " "
messagePrint "Representations are not equivalent."
transitionM
isAbsolutelyIrreducible?(aG) == isAbsolutelyIrreducible?(aG,25)
isAbsolutelyIrreducible?(aG, numberOfTries) ==
result : B := false
numberOfGenerators : NNI := #aG
-- need a start value for creating random matrices:
-- randomIndex : I := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x : M R := aG.randomIndex
n : NNI := #row(x,1) -- degree of representation
foundResult : B := false
for i in 1..numberOfTries until foundResult repeat
-- try to create a non-singular element of the algebra
-- generated by "aG", dimension of its kernel being 1.
-- create random elements recursively:
-- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly
-- chosen elements form "aG".
-- randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x := x * aG.randomIndex
--randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x := x + aG.randomIndex
-- test whether rank of x is n-1
rk : NNI := rank x
if rk = n - 1 then
foundResult := true
messagePrint "Random element in generated algebra has"
messagePrint " one-dimensional kernel"
kernel : L V R := nullSpace x
if n=#cyclicSubmodule(aG, first kernel) then
result := (irreducibilityTestInternal(aG,x,false)).1 ^= nil()_
$(L M R)
else -- we found a proper submodule
result := false
--split(aG,kernel.1) -- to get the splitting
else -- not of any use here if kernel not one-dimensional
messagePrint "Random element in generated algebra does"
messagePrint " not have a one-dimensional kernel"
-- here ends the for-loop
if not foundResult then
messagePrint "We have not found a one-dimensional kernel so far,"
messagePrint " as we do a random search you could try again"
--else
-- if not result then
-- messagePrint "Representation is not irreducible."
-- else
-- messagePrint "Representation is irreducible."
result
split(algebraGenerators: L M R, vector: V R) ==
splitInternal(algebraGenerators, vector, true)
split(algebraGenerators : L M R, submodule: V V R)== --not zero submodule
n : NNI := #submodule.1 -- R-rank of representation module =
-- degree of representation
rankOfSubmodule : I := (#submodule) :: I --R-Rank of submodule
submoduleRepresentation : L M R := nil()
factormoduleRepresentation : L M R := nil()
submoduleIndices : L I := [i for i in 1..rankOfSubmodule]
factormoduleIndices : L I := [i for i in (1+rankOfSubmodule)..(n::I)]
transitionMatrix : M R := _
transpose completeEchelonBasis submodule
messagePrint " Transition matrix computed"
inverseTransitionMatrix : M R :=
autoCoerce(inverse transitionMatrix)$Union(M R,"failed")
messagePrint " The inverse of the transition matrix computed"
messagePrint " Now transform the matrices"
for i in 1..maxIndex algebraGenerators repeat
helpMatrix : M R := inverseTransitionMatrix * algebraGenerators.i
-- in order to not create extra space and regarding the fact
-- that we only want the two blocks in the main diagonal we
-- multiply with the aid of the local function blockMultiply
submoduleRepresentation := cons( blockMultiply( _
helpMatrix,transitionMatrix,submoduleIndices,n), _
submoduleRepresentation)
factormoduleRepresentation := cons( blockMultiply( _
helpMatrix,transitionMatrix,factormoduleIndices,n), _
factormoduleRepresentation)
cons(reverse submoduleRepresentation, list( reverse _
factormoduleRepresentation)::(L L M R))
-- the following is "under" "if R has Field", as there are compiler
-- problems with conditinally defined local functions, it
-- doesn't know, that "FiniteField" has "Field".
-- we are scanning through the vectorspaces
if (R has Finite) and (R has Field) then
meatAxe(algebraGenerators, randomelements, numberOfTries, _
maxTests) ==
numberOfGenerators : NNI := #algebraGenerators
result : L L M R := nil()$(L L M R)
q : PI := size()$R:PI
-- need a start value for creating random matrices:
-- if we switch to randomelements later, we take the last
-- fingerprint.
if randomelements then -- random should not be from I
--randomIndex : I := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x : M R := algebraGenerators.randomIndex
foundResult : B := false
for i in 1..numberOfTries until foundResult repeat
-- try to create a non-singular element of the algebra
-- generated by "algebraGenerators". If only two generators,
-- i < 7 and not "randomelements" use Parker's fingerprints
-- i >= 7 create random elements recursively:
-- x_i+1 :=x_i * mr1 + mr2, where mr1 and mr2 are randomly
-- chosen elements form "algebraGenerators".
if i = 7 then randomelements := true
if randomelements then
--randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x := x * algebraGenerators.randomIndex
--randomIndex := randnum numberOfGenerators
randomIndex := 1+(random()$Integer rem numberOfGenerators)
x := x + algebraGenerators.randomIndex
else
x := fingerPrint (i, algebraGenerators.1,_
algebraGenerators.2 , x)
-- test singularity of x
n : NNI := #row(x, 1) -- degree of representation
if (rank x) ^= n then -- x singular
if randomelements then
messagePrint "Random element in generated algebra is singular"
else
messagePrint _
"Fingerprint element in generated algebra is singular"
kernel : L V R := nullSpace x
-- the first number is the maximal number of one dimensional
-- subspaces of the kernel, the second is a user given
-- constant
numberOfOneDimSubspacesInKernel : I := (q**(#kernel)-1)quo(q-1)
numberOfTests : I := _
min(numberOfOneDimSubspacesInKernel, maxTests)
for j in 1..numberOfTests repeat
--we create an element in the kernel, there is a good
--probability for it to generate a proper submodule, the
--called "split" does the further work:
result := _
split(algebraGenerators,scanOneDimSubspaces(kernel,j))
-- we had "not null rest result" directly in the following
-- if .. then, but the statment there foundResult := true
-- didn't work properly
foundResult := not null rest result
if foundResult then
leave -- inner for-loop
-- finish here with result
else -- no proper submodule
-- we were not successfull, i.e gen. submodule was
-- not proper, if the whole kernel is already scanned,
-- Norton's irreducibility test is used now.
if (j+1)>numberOfOneDimSubspacesInKernel then
-- we know that all the cyclic submodules generated
-- by all non-trivial elements of the kernel are proper.
foundResult := true
result : L L M R := irreducibilityTestInternal (_
algebraGenerators,x,true)
leave -- inner for-loop
-- here ends the inner for-loop
else -- x non-singular
if randomelements then
messagePrint _
"Random element in generated algebra is non-singular"
else
messagePrint _
"Fingerprint element in generated algebra is non-singular"
-- here ends the outer for-loop
if not foundResult then
result : L L M R := [nil()$(L M R), nil()$(L M R)]
messagePrint " "
messagePrint "Sorry, no result, try meatAxe(...,true)"
messagePrint " or consider using an extension field."
result
meatAxe (algebraGenerators) ==
meatAxe(algebraGenerators, false, 25, 7)
meatAxe (algebraGenerators, randomElements?) ==
randomElements? => meatAxe (algebraGenerators, true, 25, 7)
meatAxe(algebraGenerators, false, 6, 7)
meatAxe (algebraGenerators:L M R, numberOfTries:PI) ==
meatAxe (algebraGenerators, true, numberOfTries, 7)
scanOneDimSubspaces(basis,n) ==
-- "dimension" of subspace generated by "basis"
dim : NNI := #basis
-- "dimension of the whole space:
nn : NNI := #(basis.1)
q : NNI := size()$R
-- number of all one-dimensional subspaces:
nred : I := n rem ((q**dim -1) quo (q-1))
pos : I := nred
i : I := 0
for i in 0..dim-1 while nred >= 0 repeat
pos := nred
nred := nred - (q**i)
i := if i = 0 then 0 else i-1
coefficients : V R := new(dim,0$R)
coefficients.(dim-i) := 1$R
iR : L I := wholeRagits(pos::RADIX q)
for j in 1..(maxIndex iR) repeat
coefficients.(dim-((#iR)::I) +j) := index((iR.j+(q::I))::PI)$R
result : V R := new(nn,0)
for i in 1..maxIndex coefficients repeat
newAdd : V R := coefficients.i * basis.i
for j in 1..nn repeat
result.j := result.j + newAdd.j
result
|