/usr/share/axiom-20170501/src/algebra/RGCHAIN.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | )abbrev domain RGCHAIN RegularChain
++ Author: Marc Moreno Maza
++ Date Created: 01/1999
++ Date Last Updated: 23/01/1999
++ Description:
++ A domain for regular chains (regular triangular sets) over
++ a Gcd-Domain and with a fix list of variables.
++ This is just a front-end for the \spadtype{RegularTriangularSet}
++ domain constructor.
RegularChain(R,ls) : SIG == CODE where
R : GcdDomain
ls : List Symbol
V ==> OrderedVariableList ls
E ==> IndexedExponents V
P ==> NewSparseMultivariatePolynomial(R,V)
TS ==> RegularTriangularSet(R,E,V,P)
SIG ==> RegularTriangularSetCategory(R,E,V,P) with
zeroSetSplit : (List P, Boolean, Boolean) -> List $
++ \spad{zeroSetSplit(lp,clos?,info?)} returns a list \spad{lts} of
++ regular chains such that the union of the closures of their regular
++ zero sets equals the affine variety associated with \spad{lp}.
++ Moreover, if \spad{clos?} is \spad{false} then the union of the
++ regular zero set of the \spad{ts} (for \spad{ts} in \spad{lts})
++ equals this variety.
++ If \spad{info?} is \spad{true} then some information is
++ displayed during the computations. See
++ zeroSetSplit from RegularTriangularSet.
CODE ==> RegularTriangularSet(R,E,V,P)
|