/usr/share/axiom-20170501/src/algebra/ROIRC.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | )abbrev domain ROIRC RightOpenIntervalRootCharacterization
++ Author: Renaud Rioboo
++ Date Created: summer 1992
++ Date Last Updated: January 2004
++ Description:
++ \axiomType{RightOpenIntervalRootCharacterization} provides work with
++ interval root coding.
RightOpenIntervalRootCharacterization(TheField,ThePolDom) : SIG == CODE where
TheField : Join(OrderedRing,Field)
ThePolDom : UnivariatePolynomialCategory(TheField)
Z ==> Integer
P ==> ThePolDom
N ==> NonNegativeInteger
B ==> Boolean
UTIL ==> RealPolynomialUtilitiesPackage(TheField,ThePolDom)
RRCC ==> RealRootCharacterizationCategory
O ==> OutputForm
TwoPoints ==> Record(low:TheField , high:TheField)
SIG ==> RealRootCharacterizationCategory(TheField, ThePolDom) with
left : $ -> TheField
++ \axiom{left(rootChar)} is the left bound of the isolating
++ interval
right : $ -> TheField
++ \axiom{right(rootChar)} is the right bound of the isolating
++ interval
size : $ -> TheField
++ \axiom{size(rootChar)} is the size of the isolating interval
middle : $ -> TheField
++ \axiom{middle(rootChar)} is the middle of the isolating
++ interval
refine : $ -> $
++ \axiom{refine(rootChar)} shrinks isolating interval around
++ \axiom{rootChar}
mightHaveRoots : (P,$) -> B
++ \axiom{mightHaveRoots(p,r)} is false if \axiom{p.r} is not 0
relativeApprox : (P,$,TheField) -> TheField
++ \axiom{relativeApprox(exp,c,p) = a} is relatively close to exp
++ as a polynomial in c ip to precision p
CODE ==> add
-- local functions
makeChar: (TheField,TheField,ThePolDom) -> $
refine! : $ -> $
sturmIsolate : (List(P), TheField, TheField,N,N) -> List TwoPoints
isolate : List(P) -> List TwoPoints
rootBound : P -> TheField
linearRecip : ( P , $) -> Union(P, "failed")
linearZero? : (TheField,$) -> B
linearSign : (P,$) -> Z
sturmNthRoot : (List(P), TheField, TheField,N,N,N) -> _
Union(TwoPoints,"failed")
addOne : P -> P
minus : P -> P
translate : (P,TheField) -> P
dilate : (P,TheField) -> P
invert : P -> P
evalOne : P -> TheField
hasVarsl: List(TheField) -> B
hasVars: P -> B
-- Representation
Rep:= Record(low:TheField,high:TheField,defPol:ThePolDom)
-- and now the code !
size(rootCode) ==
rootCode.high - rootCode.low
relativeApprox(pval,rootCode,prec) ==
-- beurk !
dPol := rootCode.defPol
degree(dPol) = 1 =>
c := -coefficient(dPol,0)/leadingCoefficient(dPol)
pval.c
pval := pval rem dPol
degree(pval) = 0 => leadingCoefficient(pval)
zero?(pval,rootCode) => 0
while mightHaveRoots(pval,rootCode) repeat
rootCode := refine(rootCode)
dpval := differentiate(pval)
degree(dpval) = 0 =>
l := left(rootCode)
r := right(rootCode)
a := pval.l
b := pval.r
while ( abs(2*(a-b)/(a+b)) > prec ) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
a := pval.l
b := pval.r
(a+b)/(2::TheField)
zero?(dpval,rootCode) =>
relativeApprox(pval,
[left(rootCode),
right(rootCode),
gcd(dpval,rootCode.defPol)]$Rep,
prec)
while mightHaveRoots(dpval,rootCode) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
a := pval.l
b := pval.r
while ( abs(2*(a-b)/(a+b)) > prec ) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
a := pval.l
b := pval.r
(a+b)/(2::TheField)
approximate(pval,rootCode,prec) ==
-- glurp
dPol := rootCode.defPol
degree(dPol) = 1 =>
c := -coefficient(dPol,0)/leadingCoefficient(dPol)
pval.c
pval := pval rem dPol
degree(pval) = 0 => leadingCoefficient(pval)
dpval := differentiate(pval)
degree(dpval) = 0 =>
l := left(rootCode)
r := right(rootCode)
while ( abs((a := pval.l) - (b := pval.r)) > prec ) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
(a+b)/(2::TheField)
zero?(dpval,rootCode) =>
approximate(pval,
[left(rootCode),
right(rootCode),
gcd(dpval,rootCode.defPol)]$Rep,
prec)
while mightHaveRoots(dpval,rootCode) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
while ( abs((a := pval.l) - (b := pval.r)) > prec ) repeat
rootCode := refine(rootCode)
l := left(rootCode)
r := right(rootCode)
(a+b)/(2::TheField)
addOne(p) == p.(monomial(1,1)+(1::P))
minus(p) == p.(monomial(-1,1))
translate(p,a) == p.(monomial(1,1)+(a::P))
dilate(p,a) == p.(monomial(a,1))
evalOne(p) == "+" / coefficients(p)
invert(p) ==
d := degree(p)
mapExponents(z +-> (d-z)::N, p)
rootBound(p) ==
res : TheField := 1
raw :TheField := 1+boundOfCauchy(p)$UTIL
while (res < raw) repeat
res := 2*(res)
res
sturmNthRoot(lp,l,r,vl,vr,n) ==
nv := (vl - vr)::N
nv < n => "failed"
((nv = 1) and (n = 1)) => [l,r]
int := (l+r)/(2::TheField)
lt:List(TheField):=[]
for t in lp repeat
lt := cons(t.int , lt)
vi := sturmVariationsOf(reverse! lt)$UTIL
o :Z := n - vl + vi
if o > 0
then
sturmNthRoot(lp,int,r,vi,vr,o::N)
else
sturmNthRoot(lp,l,int,vl,vi,n)
sturmIsolate(lp,l,r,vl,vr) ==
r <= l => error "ROIRC: sturmIsolate: bad bounds"
n := (vl - vr)::N
zero?(n) => []
one?(n) => [[l,r]]
int := (l+r)/(2::TheField)
vi := sturmVariationsOf( [t.int for t in lp ] )$UTIL
append(sturmIsolate(lp,l,int,vl,vi),sturmIsolate(lp,int,r,vi,vr))
isolate(lp) ==
b := rootBound(first(lp))
l1,l2 : List(TheField)
(l1,l2) := ([] , [])
for t in reverse(lp) repeat
if odd?(degree(t))
then
(l1,l2):= (cons(-leadingCoefficient(t),l1),
cons(leadingCoefficient(t),l2))
else
(l1,l2):= (cons(leadingCoefficient(t),l1),
cons(leadingCoefficient(t),l2))
sturmIsolate(lp,
-b,
b,
sturmVariationsOf(l1)$UTIL,
sturmVariationsOf(l2)$UTIL)
rootOf(pol,n) ==
ls := sturmSequence(pol)$UTIL
pol := unitCanonical(first(ls)) -- this one is SqFR
degree(pol) = 0 => "failed"
numberOfMonomials(pol) = 1 => ([0,1,monomial(1,1)]$Rep)::$
b := rootBound(pol)
l1,l2 : List(TheField)
(l1,l2) := ([] , [])
for t in reverse(ls) repeat
if odd?(degree(t))
then
(l1,l2):= (cons(leadingCoefficient(t),l1),
cons(-leadingCoefficient(t),l2))
else
(l1,l2):= (cons(leadingCoefficient(t),l1),
cons(leadingCoefficient(t),l2))
res := sturmNthRoot(ls,
-b,
b,
sturmVariationsOf(l2)$UTIL,
sturmVariationsOf(l1)$UTIL,
n)
res case "failed" => "failed"
makeChar(res.low,res.high,pol)
allRootsOf(pol) ==
ls := sturmSequence(unitCanonical pol)$UTIL
pol := unitCanonical(first(ls)) -- this one is SqFR
degree(pol) = 0 => []
numberOfMonomials(pol) = 1 => [[0,1,monomial(1,1)]$Rep]
[ makeChar(term.low,term.high,pol) for term in isolate(ls) ]
hasVarsl(l:List(TheField)) ==
null(l) => false
f := sign(first(l))
for term in rest(l) repeat
if f*term < 0 then return(true)
false
hasVars(p:P) ==
zero?(p) => error "ROIRC: hasVars: null polynonial"
zero?(coefficient(p,0)) => true
hasVarsl(coefficients(p))
mightHaveRoots(p,rootChar) ==
a := rootChar.low
q := translate(p,a)
not(hasVars(q)) => false
a := (rootChar.high) - a
q := dilate(q,a)
sign(coefficient(q,0))*sign(evalOne(q)) <= 0 => true
q := minus(addOne(q))
not(hasVars(q)) => false
q := invert(q)
hasVars(addOne(q))
coerce(rootChar:$):O ==
commaSeparate([ hconcat("[" :: O , (rootChar.low)::O),
hconcat((rootChar.high)::O,"[" ::O ) ])
c1 = c2 ==
mM := max(c1.low,c2.low)
Mm := min(c1.high,c2.high)
mM >= Mm => false
rr : ThePolDom := gcd(c1.defPol,c2.defPol)
degree(rr) = 0 => false
sign(rr.mM) * sign(rr.Mm) <= 0
makeChar(left,right,pol) ==
res :$ := [left,right,leadingMonomial(pol)+reductum(pol)]$Rep -- safe copy
while zero?(pol.(res.high)) repeat refine!(res)
while (res.high * res.low < 0 ) repeat refine!(res)
zero?(pol.(res.low)) => [res.low,res.high,monomial(1,1)-(res.low)::P]
res
definingPolynomial(rootChar) == rootChar.defPol
linearRecip(toTest,rootChar) ==
c := - inv(leadingCoefficient(toTest)) * coefficient(toTest,0)
r := recip(rootChar.defPol.c)
if (r case "failed")
then
if (c - rootChar.low) * (c - rootChar.high) <= 0
then
"failed"
else
newPol := (rootChar.defPol exquo toTest)::P
((1$ThePolDom - inv(newPol.c)*newPol) exquo toTest)::P
else
((1$ThePolDom - (r::TheField)*rootChar.defPol) exquo toTest)::P
recip(toTest,rootChar) ==
degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) =>
error "IRC: recip: Not reduced"
degree(rootChar.defPol) = 1 =>
error "IRC: recip: Linear Defining Polynomial"
degree(toTest) = 1 =>
linearRecip(toTest, rootChar)
d := extendedEuclidean((rootChar.defPol),toTest)
(degree(d.generator) = 0 ) =>
d.coef2
d.generator := unitCanonical(d.generator)
(d.generator.(rootChar.low) *
d.generator.(rootChar.high)<= 0) => "failed"
newPol := (rootChar.defPol exquo (d.generator))::P
degree(newPol) = 1 =>
c := - inv(leadingCoefficient(newPol)) * coefficient(newPol,0)
inv(toTest.c)::P
degree(toTest) = 1 =>
c := - coefficient(toTest,0)/ leadingCoefficient(toTest)
((1$ThePolDom - inv(newPol.(c))*newPol) exquo toTest)::P
d := extendedEuclidean(newPol,toTest)
d.coef2
linearSign(toTest,rootChar) ==
c := - inv(leadingCoefficient(toTest)) * coefficient(toTest,0)
ev := sign(rootChar.defPol.c)
if zero?(ev)
then
if (c - rootChar.low) * (c - rootChar.high) <= 0
then
0
else
sign(toTest.(rootChar.high))
else
if (ev*sign(rootChar.defPol.(rootChar.high)) <= 0 )
then
sign(toTest.(rootChar.high))
else
sign(toTest.(rootChar.low))
sign(toTest,rootChar) ==
degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) =>
error "IRC: sign: Not reduced"
degree(rootChar.defPol) = 1 =>
error "IRC: sign: Linear Defining Polynomial"
degree(toTest) = 1 =>
linearSign(toTest, rootChar)
s := sign(leadingCoefficient(toTest))
toTest := monomial(1,degree(toTest))+
inv(leadingCoefficient(toTest))*reductum(toTest)
delta := gcd(toTest,rootChar.defPol)
newChar := [rootChar.low,rootChar.high,rootChar.defPol]$Rep
if degree(delta) > 0
then
if sign(delta.(rootChar.low) * delta.(rootChar.high)) <= 0
then
return(0)
else
newChar.defPol := (newChar.defPol exquo delta) :: P
toTest := toTest rem (newChar.defPol)
degree(toTest) = 0 => s * sign(leadingCoefficient(toTest))
degree(toTest) = 1 => s * linearSign(toTest, newChar)
while mightHaveRoots(toTest,newChar) repeat
newChar := refine(newChar)
s*sign(toTest.(newChar.low))
linearZero?(c,rootChar) ==
zero?((rootChar.defPol).c) and
(c - rootChar.low) * (c - rootChar.high) <= 0
zero?(toTest,rootChar) ==
degree(toTest) = 0 or degree(rootChar.defPol) <= degree(toTest) =>
error "IRC: zero?: Not reduced"
degree(rootChar.defPol) = 1 =>
error "IRC: zero?: Linear Defining Polynomial"
degree(toTest) = 1 =>
linearZero?(- inv(leadingCoefficient(toTest)) * coefficient(toTest,0),
rootChar)
toTest := monomial(1,degree(toTest))+
inv(leadingCoefficient(toTest))*reductum(toTest)
delta := gcd(toTest,rootChar.defPol)
degree(delta) = 0 => false
sign(delta.(rootChar.low) * delta.(rootChar.high)) <= 0
refine!(rootChar) ==
-- this is not a safe function, it can work with badly created object
-- we do not assume (rootChar.defPol).(rootChar.high) <> 0
int := middle(rootChar)
s1 := sign((rootChar.defPol).(rootChar.low))
zero?(s1) =>
rootChar.high := int
rootChar.defPol := monomial(1,1) - (rootChar.low)::P
rootChar
s2 := sign((rootChar.defPol).int)
zero?(s2) =>
rootChar.low := int
rootChar.defPol := monomial(1,1) - int::P
rootChar
if (s1*s2 < 0)
then
rootChar.high := int
else
rootChar.low := int
rootChar
refine(rootChar) ==
-- we assume (rootChar.defPol).(rootChar.high) <> 0
int := middle(rootChar)
s:= (rootChar.defPol).int * (rootChar.defPol).(rootChar.high)
zero?(s) => [int,rootChar.high,monomial(1,1)-int::P]
if s < 0
then
[int,rootChar.high,rootChar.defPol]
else
[rootChar.low,int,rootChar.defPol]
left(rootChar) == rootChar.low
right(rootChar) == rootChar.high
middle(rootChar) == (rootChar.low + rootChar.high)/(2::TheField)
|