This file is indexed.

/usr/share/axiom-20170501/src/algebra/RSDCMPK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
)abbrev package RSDCMPK RegularSetDecompositionPackage
++ Author: Marc Moreno Maza
++ Date Created: 09/16/1998
++ Date Last Updated: 12/16/1998
++ References :
++ SALSA Solvers for Algebraic Systems and Applications
++ Kalk91 Three contributions to elimination theory
++ Kalk98 Algorithmic properties of polynomial rings
++ Aubr96 Triangular Sets for Solving Polynomial Systems: 
++ Aubr99 On the Theories of Triangular Sets
++ Aubr99a Triangular Sets for Solving Polynomial Systems: 
++ Laza91 A new method for solving algebraic systems of positive dimension
++ Maza95 Polynomial Gcd Computations over Towers of Algebraic Extensions
++ Maza97 Calculs de pgcd au-dessus des tours d'extensions simples et 
++        resolution des systemes d'equations algebriques
++ Maza98 A new algorithm for computing triangular decomposition of 
++        algebraic varieties
++ Maza00 On Triangular Decompositions of Algebraic Varieties
++ Description: 
++ A package providing a new algorithm for solving polynomial systems
++ by means of regular chains. Two ways of solving are proposed:
++ in the sense of Zariski closure (like in Kalkbrener's algorithm)
++ or in the sense of the regular zeros (like in Wu, Wang or Lazard
++ methods). This algorithm is valid for any type
++ of regular set. It does not care about the way a polynomial is
++ added in an regular set, or how two quasi-components are compared
++ (by an inclusion-test), or how the invertibility test is made in
++ the tower of simple extensions associated with a regular set.
++ These operations are realized respectively by the domain \spad{TS}
++ and the packages 
++ \axiomType{QCMPACK}(R,E,V,P,TS) and \axiomType{RSETGCD}(R,E,V,P,TS).
++ The same way it does not care about the way univariate polynomial
++ gcd (with coefficients in the tower of simple extensions associated 
++ with a regular set) are computed. The only requirement is that these
++ gcd need to have invertible initials (normalized or not).
++ WARNING. There is no need for a user to call directly any operation
++ of this package since they can be accessed by the domain \axiom{TS}.
++ Thus, the operations of this package are not documented.

RegularSetDecompositionPackage(R,E,V,P,TS) : SIG == CODE where
  R : GcdDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)
  TS : RegularTriangularSetCategory(R,E,V,P)

  N ==> NonNegativeInteger
  Z ==> Integer
  B ==> Boolean
  LP ==> List P
  PS ==> GeneralPolynomialSet(R,E,V,P)
  PWT ==> Record(val : P, tower : TS)
  BWT ==> Record(val : Boolean, tower : TS)
  LpWT ==> Record(val : (List P), tower : TS)
  Wip ==> Record(done: Split, todo: List LpWT)
  Branch ==> Record(eq: List P, tower: TS, ineq: List P)
  UBF ==> Union(Branch,"failed")
  Split ==> List TS
  iprintpack ==> InternalPrintPackage()
  polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
  quasicomppack ==> QuasiComponentPackage(R,E,V,P,TS)
  regsetgcdpack ==> RegularTriangularSetGcdPackage(R,E,V,P,TS)

  SIG ==> with

     KrullNumber : (LP, Split) -> N

     numberOfVariables : (LP, Split) -> N

     algebraicDecompose : (P,TS,B) -> Record(done: Split, todo: List LpWT) 

     transcendentalDecompose : (P,TS,N) -> Record(done: Split, todo: List LpWT) 

     transcendentalDecompose : (P,TS) -> Record(done: Split, todo: List LpWT) 

     internalDecompose : (P,TS,N,B) -> Record(done: Split, todo: List LpWT)

     internalDecompose : (P,TS,N) -> Record(done: Split, todo: List LpWT)

     internalDecompose : (P,TS) -> Record(done: Split, todo: List LpWT)

     decompose : (LP, Split, B, B) -> Split

     decompose : (LP, Split, B, B, B, B, B) -> Split

     upDateBranches : (LP,Split,List LpWT,Wip,N) -> List LpWT

     convert : Record(val: List P,tower: TS) -> String

     printInfo : (List Record(val: List P,tower: TS), N) -> Void

  CODE ==> add

     KrullNumber(lp: LP, lts: Split): N ==
       ln: List N := [#(ts) for ts in lts]
       n := #lp + reduce(max,ln)

     numberOfVariables(lp: LP, lts: Split): N ==
       lv: List V := variables([lp]$PS)
       for ts in lts repeat lv := concat(variables(ts), lv)
       # removeDuplicates(lv)

     algebraicDecompose(p: P, ts: TS, clos?: B):_
            Record(done: Split, todo: List LpWT) ==
       ground? p =>
         error " in algebraicDecompose$REGSET: should never happen !"
       v := mvar(p); n := #ts
       ts_v_- := collectUnder(ts,v)
       ts_v_+ := collectUpper(ts,v)
       ts_v := select(ts,v)::P
       if mdeg(p) < mdeg(ts_v)
         then 
           lgwt := 
            internalLastSubResultant(ts_v,p,ts_v_-,true,false)$regsetgcdpack
         else
           lgwt := 
            internalLastSubResultant(p,ts_v,ts_v_-,true,false)$regsetgcdpack
       lts: Split := []
       llpwt: List LpWT := []
       for gwt in lgwt repeat
         g := gwt.val; us := gwt.tower
         zero? g => 
           error " in algebraicDecompose$REGSET: should never happen !!"
         ground? g => "leave"
         if mvar(g) = v then _
           lts := concat(augment(members(ts_v_+),augment(g,us)),lts) 
         h := leadingCoefficient(g,v)
         b: Boolean := purelyAlgebraic?(us)
         lsfp := squareFreeFactors(h)$polsetpack
         lus := augment(members(ts_v_+),augment(ts_v,us)@Split)
         for f in lsfp repeat
           ground? f => "leave"
           b and purelyAlgebraic?(f,us) => "leave"
           for vs in lus repeat
              llpwt := cons([[f,p],vs]$LpWT, llpwt)
       [lts,llpwt]

     transcendentalDecompose(p: P, ts: TS,bound: N):_
             Record(done: Split, todo: List LpWT) ==
       lts: Split
       if #ts < bound 
         then
           lts := augment(p,ts)
         else
           lts := []
       llpwt: List LpWT := []
       [lts,llpwt]

     transcendentalDecompose(p: P, ts: TS):_
          Record(done: Split, todo: List LpWT) ==
       lts: Split:= augment(p,ts)
       llpwt: List LpWT := []
       [lts,llpwt]

     internalDecompose(p: P, ts: TS,bound: N,clos?:B):_
          Record(done: Split, todo: List LpWT) ==
       clos? => internalDecompose(p,ts,bound)
       internalDecompose(p,ts)

     internalDecompose(p: P, ts: TS,bound: N):_
           Record(done: Split, todo: List LpWT) ==
       -- ASSUME p not constant
       llpwt: List LpWT := []
       lts: Split := []
       -- EITHER mvar(p) is null
       if (not zero? tail(p)) and (not ground? (lmp := leastMonomial(p)))
         then
           llpwt := cons([[mvar(p)::P],ts]$LpWT,llpwt)
           p := (p exquo lmp)::P
       ip := squareFreePart init(p); tp := tail p
       p := mainPrimitivePart p
       -- OR init(p) is null or not
       lbwt := invertible?(ip,ts)@(List BWT)
       for bwt in lbwt repeat
         bwt.val =>
           if algebraic?(mvar(p),bwt.tower) 
             then 
               rsl := algebraicDecompose(p,bwt.tower,true)
             else
               rsl := transcendentalDecompose(p,bwt.tower,bound)
           lts := concat(rsl.done,lts)
           llpwt := concat(rsl.todo,llpwt)
           purelyAlgebraic?(ip,bwt.tower) and _
             purelyAlgebraic?(bwt.tower) => "leave" -- SAFE
           (not ground? ip) => 
             zero? tp => llpwt := cons([[ip],bwt.tower]$LpWT, llpwt)
             (not ground? tp) => llpwt := cons([[ip,tp],bwt.tower]$LpWT, llpwt)
         riv := removeZero(ip,bwt.tower)
         (zero? riv) =>
           zero? tp => lts := cons(bwt.tower,lts)
           (not ground? tp) => llpwt := cons([[tp],bwt.tower]$LpWT, llpwt)
         llpwt := cons([[riv * mainMonomial(p) + tp],bwt.tower]$LpWT, llpwt)
       [lts,llpwt]

     internalDecompose(p: P, ts: TS): Record(done: Split, todo: List LpWT) ==
       -- ASSUME p not constant
       llpwt: List LpWT := []
       lts: Split := []
       -- EITHER mvar(p) is null
       if (not zero? tail(p)) and (not ground? (lmp := leastMonomial(p)))
         then
           llpwt := cons([[mvar(p)::P],ts]$LpWT,llpwt)
           p := (p exquo lmp)::P
       ip := squareFreePart init(p); tp := tail p
       p := mainPrimitivePart p
       -- OR init(p) is null or not
       lbwt := invertible?(ip,ts)@(List BWT)
       for bwt in lbwt repeat
         bwt.val =>
           if algebraic?(mvar(p),bwt.tower) 
             then 
               rsl := algebraicDecompose(p,bwt.tower,false)
             else
               rsl := transcendentalDecompose(p,bwt.tower)
           lts := concat(rsl.done,lts)
           llpwt :=  concat(rsl.todo,llpwt)
           purelyAlgebraic?(ip,bwt.tower) and _
             purelyAlgebraic?(bwt.tower) => "leave"
           (not ground? ip) => 
             zero? tp => llpwt := cons([[ip],bwt.tower]$LpWT, llpwt)
             (not ground? tp) => llpwt := cons([[ip,tp],bwt.tower]$LpWT, llpwt)
         riv := removeZero(ip,bwt.tower)
         (zero? riv) =>
           zero? tp => lts := cons(bwt.tower,lts)
           (not ground? tp) => llpwt := cons([[tp],bwt.tower]$LpWT, llpwt)
         llpwt := cons([[riv * mainMonomial(p) + tp],bwt.tower]$LpWT, llpwt)
       [lts,llpwt]

     decompose(lp: LP, lts: Split, clos?: B, info?: B): Split ==
       decompose(lp,lts,false,false,clos?,true,info?)

     convert(lpwt: LpWT): String ==
       ls: List String := _
        ["<", string((#(lpwt.val))::Z), ",", string((#(lpwt.tower))::Z), ">" ]
       concat ls

     printInfo(toSee: List LpWT, n: N): Void ==
       lpwt := first toSee
       s: String:= concat ["[", string((#toSee)::Z), " ", convert(lpwt)@String]
       m: N := #(lpwt.val)
       toSee := rest toSee
       for lpwt in toSee repeat
         m := m + #(lpwt.val)
         s := concat [s, ",", convert(lpwt)@String]
       s := concat [s, " -> |", string(m::Z), "|; {", string(n::Z),"}]"]
       iprint(s)$iprintpack
       void()

     decompose(lp: LP, lts: Split, cleanW?: B, sqfr?: B, clos?: B, _
               rem?: B, info?: B): Split ==
       -- if cleanW? then REMOVE REDUNDANT COMPONENTS in lts
       -- if sqfr? then SPLIT the system with SQUARE-FREE FACTORIZATION
       -- if clos? then SOLVE in the closure sense 
       -- if rem? then REDUCE the current p by using remainder
       -- if info? then PRINT info
       empty? lp => lts
       branches: List Branch :=
         prepareDecompose(lp,lts,cleanW?,sqfr?)$quasicomppack
       empty? branches => []
       toSee: List LpWT := [[br.eq,br.tower]$LpWT for br in branches]
       toSave: Split := []
       if clos? then bound := KrullNumber(lp,lts) _
                else bound := numberOfVariables(lp,lts)
       while (not empty? toSee) repeat
         if info? then printInfo(toSee,#toSave)
         lpwt := first toSee; toSee := rest toSee
         lp := lpwt.val; ts := lpwt.tower
         empty? lp => 
           toSave := cons(ts, toSave)
         p := first lp;  lp := rest lp
         if rem? and (not ground? p) and (not empty? ts)  
            then 
              p := remainder(p,ts).polnum
         p := removeZero(p,ts)
         zero? p => toSee := cons([lp,ts]$LpWT, toSee)
         ground? p => "leave"
         rsl := internalDecompose(p,ts,bound,clos?)
         toSee := upDateBranches(lp,toSave,toSee,rsl,bound)
       removeSuperfluousQuasiComponents(toSave)$quasicomppack

     upDateBranches(leq:LP,lts:Split,current:List LpWT,wip: Wip,n:N):_
          List LpWT ==
       newBranches: List LpWT := wip.todo
       newComponents: Split := wip.done
       branches1, branches2:  List LpWT 
       branches1 := []; branches2  := []
       for branch in newBranches repeat
         us := branch.tower
         #us > n => "leave"
         newleq := sort(infRittWu?,concat(leq,branch.val))
         branches1 := cons([newleq,us]$LpWT, branches1)
       for us in newComponents repeat
         #us > n => "leave"
         subQuasiComponent?(us,lts)$quasicomppack => "leave"
         branches2 := cons([leq,us]$LpWT, branches2)
       empty? branches1 => 
         empty? branches2 => current
         concat(branches2, current)
       branches := concat [branches2, branches1, current]
       removeSuperfluousCases(branches)$quasicomppack