This file is indexed.

/usr/share/axiom-20170501/src/algebra/SAE.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
)abbrev domain SAE SimpleAlgebraicExtension
++ Author: Barry Trager, Manuel Bronstein, Clifton Williamson
++ Date Created: 1986
++ Date Last Updated: 9 May 1994
++ References:
++ Grab92 Finite Fields in Axiom
++ Description:
++ Algebraic extension of a ring by a single polynomial.
++ Domain which represents simple algebraic extensions of arbitrary
++ rings. The first argument to the domain, R, is the underlying ring,
++ the second argument is a domain of univariate polynomials over K,
++ while the last argument specifies the defining minimal polynomial.
++ The elements of the domain are canonically represented as polynomials
++ of degree less than that of the minimal polynomial with coefficients
++ in R. The second argument is both the type of the third argument and
++ the underlying representation used by \spadtype{SAE} itself.

SimpleAlgebraicExtension(R,UP,M) : SIG == CODE where
  R : CommutativeRing
  UP : UnivariatePolynomialCategory R
  M : UP

  SIG ==> MonogenicAlgebra(R, UP)

  CODE ==> add

    --sqFr(pb): FactorS(Poly) from UnivPolySquareFree(Poly)

    --degree(M) > 0 and M must be monic if R is not a field.
    if (r := recip leadingCoefficient M) case "failed" then
                                    error "Modulus cannot be made monic"
    Rep := UP
    x,y :$
    c: R

    mkDisc   : Boolean -> Void

    mkDiscMat: Boolean -> Void

    M   := r::R * M

    d   := degree M

    d1  := subtractIfCan(d,1)::NonNegativeInteger

    discmat:Matrix(R) := zero(d, d)

    nodiscmat?:Reference(Boolean) := ref true

    disc:Reference(R) := ref 0

    nodisc?:Reference(Boolean) := ref true

    bsis := [monomial(1, i)$Rep for i in 0..d1]$Vector(Rep)

    if R has Finite then

         size == size$R ** d

         random == represents([random()$R for i in 0..d1])

    0 == 0$Rep

    1 == 1$Rep

    c * x == c *$Rep x

    n:Integer * x == n *$Rep x

    coerce(n:Integer):$   == coerce(n)$Rep

    coerce(c) == monomial(c,0)$Rep

    coerce(x):OutputForm == coerce(x)$Rep

    lift(x) == x pretend Rep

    reduce(p:UP):$ == (monicDivide(p,M)$Rep).remainder

    x = y == x =$Rep y

    x + y == x +$Rep y

    - x == -$Rep x

    x * y == reduce((x *$Rep y) pretend UP)

    coordinates(x) == [coefficient(lift(x),i) for i in 0..d1]

    represents(vect) == +/[monomial(vect.(i+1),i) for i in 0..d1]

    definingPolynomial()  == M

    characteristic()      == characteristic()$R

    rank()                == d::PositiveInteger

    basis()               == copy(bsis@Vector(Rep) pretend Vector($))

    if R has Field then

      minimalPolynomial x == squareFreePart characteristicPolynomial x

    if R has Field then

      coordinates(x:$,bas: Vector $) ==
        (m := inverse transpose coordinates bas) case "failed" =>
          error "coordinates: second argument must be a basis"
        (m :: Matrix R) * coordinates(x)

    else if R has IntegralDomain then

      coordinates(x:$,bas: Vector $) ==
        -- we work over the quotient field of R to invert a matrix
        qf := Fraction R
        imatqf := InnerMatrixQuotientFieldFunctions(R,Vector R,Vector R,_
                   Matrix R,qf,Vector qf,Vector qf,Matrix qf)
        mat := transpose coordinates bas
        (m := inverse(mat)$imatqf) case "failed" =>
          error "coordinates: second argument must be a basis"
        coordsQF: Vector qf := 
          map(y +-> y::qf,coordinates x)$VectorFunctions2(R,qf)
        -- here are the coordinates as elements of the quotient field:
        vecQF := (m :: Matrix qf) * coordsQF
        vec : Vector R := new(d,0)
        for i in 1..d repeat
          xi := qelt(vecQF,i)
          denom(xi) = 1 => qsetelt_!(vec,i,numer xi)
          error "coordinates: coordinates are not integral over ground ring"
        vec

    reducedSystem(m:Matrix $):Matrix(R) ==
      reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $,
               Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP))

    reducedSystem(m:Matrix $, v:Vector $):Record(mat:Matrix R,vec:Vector R) ==
      reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $,
               Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP),
                                    map(lift, v)$VectorFunctions2($, UP))

    discriminant() ==
      if nodisc?() then mkDisc false
      disc()

    mkDisc b ==
      nodisc?() := b
      disc() := discriminant M
      void

    traceMatrix() ==
      if nodiscmat?() then mkDiscMat false
      discmat

    mkDiscMat b ==
      nodiscmat?() := b
      mr := minRowIndex discmat; mc := minColIndex discmat
      for i in 0..d1 repeat
        for j in 0..d1 repeat
          qsetelt_!(discmat,mr + i,mc + j,trace reduce monomial(1,i + j))
      void

    trace x ==          --this could be coded perhaps more efficiently
      xn := x;  ans := coefficient(lift xn, 0)
      for n in 1..d1 repeat
        (xn := generator() * xn;  ans := coefficient(lift xn, n) + ans)
      ans

    if R has Finite then

       index k ==
         i:Integer := k rem size()
         p:Integer := size()$R
         ans:$ := 0
         for j in 0.. while i > 0 repeat
           h := i rem p
           -- index(p) = 0$R
           if h ^= 0 then
             -- here was a bug: "index" instead of
             -- "coerce", otherwise it wouldn't work for
             -- Rings R where "coerce: I-> R" is not surjective
             a := index(h :: PositiveInteger)$R
             ans := ans + reduce monomial(a, j)
           i := i quo p
         ans

       lookup(z : $) : PositiveInteger ==
         -- z = index lookup z, n = lookup index n
         -- the answer is merely the Horner evaluation of the
         -- representation with the size of R (as integers).
         zero?(z) => size()$$ pretend PositiveInteger
         p  :            Integer := size()$R
         co :            Integer := lookup(leadingCoefficient z)$R
         n  : NonNegativeInteger := degree(z)
         while not zero?(z := reductum z) repeat
          co := co * p ** ((n - (n := degree z)) pretend
            NonNegativeInteger) + lookup(leadingCoefficient z)$R
         n = 0 => co pretend PositiveInteger
         (co * p ** n) pretend PositiveInteger