This file is indexed.

/usr/share/axiom-20170501/src/algebra/SGCF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
)abbrev package SGCF SymmetricGroupCombinatoricFunctions
++ Authors: Johannes Grabmeier, Thorsten Werther
++ Date Created: 03 September 1988
++ Date Last Updated: 07 June 1990
++ References:
++   G. James/ A. Kerber: The Representation Theory of the Symmetric
++    Group. Encycl. of Math. and its Appl., Vol. 16., Cambridge
++    Univ. Press 1981, ISBN 0-521-30236-6.
++   S.G. Williamson: Combinatorics for Computer Science,
++    Computer Science Press, Rockville, Maryland, USA, ISBN 0-88175-020-4.
++   A. Nijenhuis / H.S. Wilf: Combinatoral Algorithms, Academic Press 1978.
++    ISBN 0-12-519260-6.
++   H. Gollan, J. Grabmeier: Algorithms in Representation Theory and
++    their Realization in the Computer Algebra System Scratchpad,
++    Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23.
++ Description:
++ SymmetricGroupCombinatoricFunctions contains combinatoric
++ functions concerning symmetric groups and representation
++ theory: list young tableaus, improper partitions, subsets
++ bijection of Coleman.
 
SymmetricGroupCombinatoricFunctions() : SIG == CODE where
 
  NNI  ==> NonNegativeInteger
  I    ==> Integer
  L    ==> List
  M    ==> Matrix
  V    ==> Vector
  B    ==> Boolean
  ICF  ==> IntegerCombinatoricFunctions Integer
 
  SIG ==> with
 
    coleman : (L I, L I, L I) -> M I
      ++ coleman(alpha,beta,pi):
      ++ there is a bijection from the set of matrices having nonnegative
      ++ entries and row sums alpha, column sums beta
      ++ to the set of Salpha - Sbeta double cosets of the
      ++ symmetric group Sn. (Salpha is the Young subgroup
      ++ corresponding to the improper partition alpha).
      ++ For a representing element pi of such a double coset,
      ++ coleman(alpha,beta,pi) generates the Coleman-matrix
      ++ corresponding to alpha, beta, pi.
      ++ Note that The permutation pi of {1,2,...,n} has to be given
      ++ in list form.
      ++ Note that the inverse of this map is inverseColeman
      ++ (if pi is the lexicographical smallest permutation
      ++ in the coset). For details see James/Kerber.

    inverseColeman : (L I, L I, M I) -> L I
      ++ inverseColeman(alpha,beta,C):
      ++ there is a bijection from the set of matrices having nonnegative
      ++ entries and row sums alpha, column sums beta
      ++ to the set of Salpha - Sbeta double cosets of the
      ++ symmetric group Sn. (Salpha is the Young subgroup
      ++ corresponding to the improper partition alpha).
      ++ For such a matrix C, inverseColeman(alpha,beta,C)
      ++ calculates the lexicographical smallest pi in the
      ++ corresponding double coset.
      ++ Note that the resulting permutation pi of {1,2,...,n} 
      ++ is given in list form.
      ++ Notes: the inverse of this map is coleman.
      ++ For details, see James/Kerber.

    listYoungTableaus : (L I) -> L M I
      ++ listYoungTableaus(lambda) where lambda is a proper partition
      ++ generates the list of all standard tableaus of shape lambda
      ++ by means of lattice permutations. The numbers of the lattice
      ++ permutation are interpreted as column labels. Hence the
      ++ contents of these lattice permutations are the conjugate of
      ++ lambda.
      ++ Notes: the functions nextLatticePermutation and
      ++ makeYoungTableau are used.
      ++ The entries are from 0,...,n-1.

    makeYoungTableau : (L I,L I) -> M I
      ++ makeYoungTableau(lambda,gitter) computes for a given lattice
      ++ permutation gitter and for an improper partition lambda
      ++ the corresponding standard tableau of shape lambda.
      ++ Notes: see listYoungTableaus.
      ++ The entries are from 0,...,n-1.

    nextColeman : (L I, L I, M I) -> M I
      ++ nextColeman(alpha,beta,C) generates the next Coleman matrix
      ++ of column sums alpha and row sums beta according
      ++ to the lexicographical order from bottom-to-top.
      ++ The first Coleman matrix is achieved by C=new(1,1,0).
      ++ Also, new(1,1,0) indicates that C is the last Coleman matrix.

    nextLatticePermutation : (L I, L I, B) -> L I
      ++ nextLatticePermutation(lambda,lattP,constructNotFirst) generates
      ++ the lattice permutation according to the proper partition
      ++ lambda succeeding the lattice permutation lattP in
      ++ lexicographical order as long as constructNotFirst is true.
      ++ If constructNotFirst is false, the first lattice permutation
      ++ is returned.
      ++ The result nil indicates that lattP has no successor.

    nextPartition : (V I, V I, I) -> V I
      ++ nextPartition(gamma,part,number) generates the partition of
      ++ number which follows part according to the right-to-left
      ++ lexicographical order. The partition has the property that
      ++ its components do not exceed the corresponding components of
      ++ gamma. The first partition is achieved by part=[].
      ++ Also, [] indicates that part is the last partition.

    nextPartition : (L I, V I, I) -> V I
      ++ nextPartition(gamma,part,number) generates the partition of
      ++ number which follows part according to the right-to-left
      ++ lexicographical order. The partition has the property that
      ++ its components do not exceed the corresponding components of
      ++ gamma. the first partition is achieved by part=[].
      ++ Also, [] indicates that part is the last partition.

    numberOfImproperPartitions: (I,I) -> I
      ++ numberOfImproperPartitions(n,m) computes the number of partitions
      ++ of the nonnegative integer n in m nonnegative parts with regarding
      ++ the order (improper partitions).
      ++ Example: numberOfImproperPartitions (3,3) is 10,
      ++ since [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1],
      ++ [1,2,0], [2,0,1], [2,1,0], [3,0,0] are the possibilities.
      ++ Note that this operation has a recursive implementation.

    subSet : (I,I,I) -> L I
      ++ subSet(n,m,k) calculates the k-th m-subset of the set
      ++ 0,1,...,(n-1) in the lexicographic order considered as
      ++ a decreasing map from 0,...,(m-1) into 0,...,(n-1).
      ++ See S.G. Williamson: Theorem 1.60.
      ++ Error: if not (0 <= m <= n and 0 < = k < (n choose m)).

    unrankImproperPartitions0 : (I,I,I) -> L I
      ++ unrankImproperPartitions0(n,m,k) computes the k-th improper
      ++ partition of nonnegative n in m nonnegative parts in reverse
      ++ lexicographical order.
      ++ Example: [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] <
      ++ [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0].
      ++ Error: if k is negative or too big.
      ++ Note that counting of subtrees is done by 
      ++ numberOfImproperPartitions

    unrankImproperPartitions1: (I,I,I) -> L I
      ++ unrankImproperPartitions1(n,m,k) computes the k-th improper
      ++ partition of nonnegative n in at most m nonnegative parts 
      ++ ordered as follows: first, in reverse
      ++ lexicographically according to their non-zero parts, then
      ++ according to their positions (lexicographical order
      ++ using subSet: [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] <
      ++ [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1].
      ++ Note that counting of subtrees is done by
      ++ numberOfImproperPartitionsInternal.
 
  CODE ==> add
 
    import Set I
 
    -- declaration of local functions
 
    numberOfImproperPartitionsInternal: (I,I,I) -> I
      -- this is used as subtree counting function in
      -- "unrankImproperPartitions1". For (n,m,cm) it counts
      -- the following set of m-tuples: The  first (from left
      -- to right) m-cm non-zero entries are equal, the remaining
      -- positions sum up to n. Example: (3,3,2) counts
      -- [x,3,0], [x,0,3], [0,x,3], [x,2,1], [x,1,2], x non-zero.
 
    -- definition of local functions
 
    numberOfImproperPartitionsInternal(n,m,cm) ==
      n = 0 => binomial(m,cm)$ICF
      cm = 0 and n > 0 => 0
      s := 0
      for i in 0..n-1 repeat
        s := s + numberOfImproperPartitionsInternal(i,m,cm-1)
      s
 
    -- definition of exported functions
 
    numberOfImproperPartitions(n,m) ==
      if n < 0 or m < 1 then return 0
      if m = 1 or n = 0 then return 1
      s := 0
      for i in 0..n repeat
        s := s + numberOfImproperPartitions(n-i,m-1)
      s
 
    unrankImproperPartitions0(n,m,k) ==
      l : L I  := nil$(L I)
      k < 0 => error"counting of partitions is started at 0"
      k >= numberOfImproperPartitions(n,m) =>
        error"there are not so many partitions"
      for t in 0..(m-2) repeat
        s : I := 0
        for y in 0..n repeat
          sOld := s
          s := s + numberOfImproperPartitions(n-y,m-t-1)
          if s > k then leave
        l := append(l,list(y)$(L I))$(L I)
        k := k - sOld
        n := n - y
      l := append(l,list(n)$(L I))$(L I)
      l
 
    unrankImproperPartitions1(n,m,k) ==
      -- we use the counting procedure of the leaves in a tree
      -- having the following structure: First of all non-zero
      -- labels for the sons. If addition along a path gives n,
      -- then we go on creating the subtree for (n choose cm)
      -- where cm is the length of the path. These subsets determine
      -- the positions for the non-zero labels for the partition
      -- to be formeded. The remaining positions are filled by zeros.
      nonZeros   : L I := nil$(L I)
      partition  : V I :=  new(m::NNI,0$I)$(V I)
      k < 0 => nonZeros
      k >= numberOfImproperPartitions(n,m) => nonZeros
      cm : I := m    --cm gives the depth of the tree
      while n ^= 0 repeat
        s : I := 0
        cm := cm - 1
        for y in n..1 by -1 repeat   --determination of the next son
          sOld := s  -- remember old s
          -- this functions counts the number of elements in a subtree
          s := s + numberOfImproperPartitionsInternal(n-y,m,cm)
          if s > k then leave
        -- y is the next son, so put it into the pathlist "nonZero"
        nonZeros := append(nonZeros,list(y)$(L I))$(L I)
        k := k - sOld    --updating
        n := n - y       --updating
      --having found all m-cm non-zero entries we change the structure
      --of the tree and determine the non-zero positions
      nonZeroPos : L I := reverse subSet(m,m-cm,k)
      --building the partition
      for i in 1..m-cm  repeat partition.(1+nonZeroPos.i) := nonZeros.i
      entries partition
 
    subSet(n,m,k) ==
      k < 0 or n < 0 or m < 0 or m > n =>
        error "improper argument to subSet"
      bin : I := binomial$ICF (n,m)
      k >= bin =>
        error "there are not so many subsets"
      l : L I  := []
      n = 0 => l
      mm : I := k
      s  : I := m
      for t in 0..(m-1) repeat
         for y in (s-1)..(n+1) repeat
            if binomial$ICF (y,s) > mm then leave
         l := append (l,list(y-1)$(L I))
         mm := mm - binomial$ICF (y-1,s)
         s := s-1
      l
 
    nextLatticePermutation(lambda, lattP, constructNotFirst) ==
      lprime  : L I  := conjugate(lambda)$PartitionsAndPermutations
      columns : NNI := (first(lambda)$(L I))::NNI
      rows    : NNI := (first(lprime)$(L I))::NNI
      n       : NNI :=(+/lambda)::NNI
      not constructNotFirst =>   -- first lattice permutation
        lattP := nil$(L I)
        for i in columns..1 by -1 repeat
          for l in 1..lprime(i) repeat
            lattP := cons(i,lattP)
        lattP
      help : V I := new(columns,0) -- entry help(i) stores the number
      -- of occurences of number i on our way from right to left
      rightPosition  : NNI := n
      leftEntry : NNI := lattP(rightPosition)::NNI
      ready  : B  := false
      until (ready or (not constructNotFirst)) repeat
        rightEntry : NNI := leftEntry
        leftEntry := lattP(rightPosition-1)::NNI
        help(rightEntry) := help(rightEntry) + 1
        -- search backward decreasing neighbour elements
        if rightEntry > leftEntry then
          if ((lprime(leftEntry)-help(leftEntry)) >_
            (lprime(rightEntry)-help(rightEntry)+1)) then
            -- the elements may be swapped because the number of occurances
            -- of leftEntry would still be greater than those of rightEntry
            ready := true
            j : NNI := leftEntry + 1
            -- search among the numbers leftEntry+1..rightEntry for the
            -- smallest one which can take the place of leftEntry.
            -- negation of condition above:
            while (help(j)=0) or ((lprime(leftEntry)-lprime(j))
              < (help(leftEntry)-help(j)+2)) repeat j := j + 1
            lattP(rightPosition-1) := j
            help(j) := help(j)-1
            help(leftEntry) := help(leftEntry) + 1
            -- reconstruct the rest of the list in increasing order
            for l in rightPosition..n repeat
              j := 0
              while help(1+j) = 0 repeat j := j + 1
              lattP(l::NNI) := j+1
              help(1+j) := help(1+j) - 1
        -- end of "if rightEntry > leftEntry"
        rightPosition := (rightPosition-1)::NNI
        if rightPosition = 1 then constructNotFirst := false
      -- end of repeat-loop
      not constructNotFirst =>  nil$(L I)
      lattP
 
    makeYoungTableau(lambda,gitter) ==
      lprime  : L I  := conjugate(lambda)$PartitionsAndPermutations
      columns : NNI := (first(lambda)$(L I))::NNI
      rows    : NNI := (first(lprime)$(L I))::NNI
      ytab    : M I  := new(rows,columns,0)
      help    : V I  := new(columns,1)
      i : I := -1     -- this makes the entries ranging from 0,..,n-1
                      -- i := 0 would make it from 1,..,n.
      j : I := 0
      for l in 1..maxIndex gitter repeat
        j := gitter(l)
        i := i + 1
        ytab(help(j),j) := i
        help(j) := help(j) + 1
      ytab
 
    listYoungTableaus(lambda) ==
      lattice   : L I
      ytab      : M I
      younglist : L M I := nil$(L M I)
      lattice   := nextLatticePermutation(lambda,lattice,false)
      until null lattice repeat
        ytab      := makeYoungTableau(lambda,lattice)
        younglist := append(younglist,[ytab]$(L M I))$(L M I)
        lattice   := nextLatticePermutation(lambda,lattice,true)
      younglist
 
    nextColeman(alpha,beta,C) ==
      nrow  : NNI := #beta
      ncol  : NNI := #alpha
      vnull : V I  := vector(nil()$(L I)) -- empty vector
      vzero : V I  := new(ncol,0)
      vrest : V I  := new(ncol,0)
      cnull : M I  := new(1,1,0)
      coleman := copy C
      if coleman ^= cnull then
        -- look for the first row of "coleman" that has a succeeding
        -- partition, this can be atmost row nrow-1
        i : NNI := (nrow-1)::NNI
        vrest := row(coleman,i) + row(coleman,nrow)
        --for k in 1..ncol repeat
        --  vrest(k) := coleman(i,k) + coleman(nrow,k)
        succ := nextPartition(vrest,row(coleman, i),beta(i))
        while (succ = vnull) repeat
          if i = 1 then return cnull -- part is last partition
          i := (i - 1)::NNI
          --for k in 1..ncol repeat
          --  vrest(k) := vrest(k) + coleman(i,k)
          vrest := vrest + row(coleman,i)
          succ := nextPartition(vrest, row(coleman, i), beta(i))
        j : I := i
        coleman := setRow_!(coleman, i, succ)
        --for k in 1..ncol repeat
        --  vrest(k) := vrest(k) - coleman(i,k)
        vrest := vrest - row(coleman,i)
      else
        vrest := vector alpha
        -- for k in 1..ncol repeat
        --  vrest(k) := alpha(k)
        coleman := new(nrow,ncol,0)
        j : I := 0
      for i in (j+1)::NNI..nrow-1 repeat
        succ := nextPartition(vrest,vnull,beta(i))
        coleman := setRow_!(coleman, i, succ)
        vrest := vrest - succ
        --for k in 1..ncol repeat
        --  vrest(k) := vrest(k) - succ(k)
      setRow_!(coleman, nrow, vrest)
 
    nextPartition(gamma:V I, part:V I, number:I) ==
      nextPartition(entries gamma, part, number)
 
    nextPartition(gamma:L I,part:V I,number:I) ==
      n : NNI := #gamma
      vnull : V I := vector(nil()$(L I)) -- empty vector
      if part ^= vnull then
        i : NNI := 2
        sum := part(1)
        while (part(i) = gamma(i)) or (sum = 0) repeat
          sum := sum + part(i)
          i := i + 1
          if i = 1+n then return vnull -- part is last partition
        sum := sum - 1
        part(i) := part(i) + 1
      else
        sum := number
        part := new(n,0)
        i := 1+n
      j : NNI := 1
      while sum > gamma(j) repeat
        part(j) := gamma(j)
        sum := sum - gamma(j)
        j := j + 1
      part(j) := sum
      for k in j+1..i-1 repeat
        part(k) := 0
      part
 
    inverseColeman(alpha,beta,C) ==
      pi   : L I  := nil$(L I)
      nrow : NNI := #beta
      ncol : NNI := #alpha
      help : V I  := new(nrow,0)
      sum  : I   := 1
      for i in 1..nrow repeat
        help(i) := sum
        sum := sum + beta(i)
      for j in 1..ncol repeat
        for i in 1..nrow repeat
          for k in 2..1+C(i,j) repeat
            pi := append(pi,list(help(i))$(L I))
            help(i) := help(i) + 1
      pi
 
    coleman(alpha,beta,pi) ==
      nrow : NNI := #beta
      ncol : NNI := #alpha
      temp : L L I := nil$(L L I)
      help : L I  := nil$(L I)
      colematrix : M I := new(nrow,ncol,0)
      betasum  : NNI := 0
      alphasum : NNI := 0
      for i in 1..ncol repeat
        help := nil$(L I)
        for j in alpha(i)..1 by-1 repeat
          help := cons(pi(j::NNI+alphasum),help)
        alphasum := (alphasum + alpha(i))::NNI
        temp := append(temp,list(help)$(L L I))
      for i in 1..nrow repeat
        help := nil$(L I)
        for j in beta(i)..1 by-1 repeat
          help := cons(j::NNI+betasum, help)
        betasum := (betasum + beta(i))::NNI
        for j in 1..ncol repeat
          colematrix(i,j) := #intersect(brace(help),brace(temp(j)))
      colematrix