This file is indexed.

/usr/share/axiom-20170501/src/algebra/SHP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
)abbrev package SHP SturmHabichtPackage
++ Author: Lalo Gonzalez-Vega
++ Date Created: 1994?
++ Date Last Updated: 30 January 1996
++ Description: 
++ This package produces functions for counting etc. real roots of univariate 
++ polynomials in x over R, which must be an OrderedIntegralDomain

SturmHabichtPackage(R,x) : SIG == CODE where
  R: OrderedIntegralDomain
  x: Symbol

  UP ==> UnivariatePolynomial
  L ==> List
  INT ==> Integer
  NNI ==> NonNegativeInteger

  SIG ==> with

     subresultantSequence : (UP(x,R),UP(x,R)) -> L UP(x,R)
       ++ subresultantSequence(p1,p2) computes the (standard) 
       ++ subresultant sequence of p1 and p2

     SturmHabichtSequence : (UP(x,R),UP(x,R)) -> L UP(x,R)
       ++ SturmHabichtSequence(p1,p2) computes the Sturm-Habicht
       ++ sequence of p1 and p2

     SturmHabichtCoefficients : (UP(x,R),UP(x,R)) -> L R
       ++ SturmHabichtCoefficients(p1,p2) computes the principal
       ++ Sturm-Habicht coefficients of p1 and p2

     SturmHabicht : (UP(x,R),UP(x,R)) -> INT 
       ++ SturmHabicht(p1,p2) computes c_{+}-c_{-} where
       ++ c_{+} is the number of real roots of p1 with p2>0 and c_{-}
       ++ is the number of real roots of p1 with p2<0. If p2=1 what
       ++ you get is the number of real roots of p1.

     countRealRoots:(UP(x,R)) -> INT
       ++ countRealRoots(p) says how many real roots p has

     if R has GcdDomain then

        SturmHabichtMultiple : (UP(x,R),UP(x,R)) -> INT
          ++ SturmHabichtMultiple(p1,p2) computes c_{+}-c_{-} where
          ++ c_{+} is the number of real roots of p1 with p2>0 and c_{-}
          ++ is the number of real roots of p1 with p2<0. If p2=1 what
          ++ you get is the number of real roots of p1.

        countRealRootsMultiple : (UP(x,R)) -> INT
          ++ countRealRootsMultiple(p) says how many real roots p has,
          ++ counted with multiplicity

  CODE ==> add

     p1,p2: UP(x,R)
     Ex ==> OutputForm
     import OutputForm

     subresultantSequenceBegin(p1,p2):L UP(x,R) ==
       d1:NNI:=degree(p1)
       d2:NNI:=degree(p2)
       n:NNI:=(d1-1)::NNI
       d2 = n =>
         Pr:UP(x,R):=pseudoRemainder(p1,p2)
         append([p1,p2]::L UP(x,R),[Pr]::L UP(x,R))
       d2 = (n-1)::NNI =>
         Lc1:UP(x,R):=leadingCoefficient(p1)*leadingCoefficient(p2)*p2
         Lc2:UP(x,R):=-leadingCoefficient(p1)*pseudoRemainder(p1,p2)
         append([p1,p2]::L UP(x,R),[Lc1,Lc2]::L UP(x,R))
       LSubr:L UP(x,R):=[p1,p2]
       in1:INT:=(d2+1)::INT
       in2:INT:=(n-1)::INT
       for i in in1..in2 repeat
         LSubr:L UP(x,R):=append(LSubr::L UP(x,R),[0]::L UP(x,R))
       c1:R:=(leadingCoefficient(p1)*leadingCoefficient(p2))**((n-d2)::NNI)
       Lc1:UP(x,R):=monomial(c1,0)*p2
       Lc2:UP(x,R):=
         (-leadingCoefficient(p1))**((n-d2)::NNI)*pseudoRemainder(p1,p2)
       append(LSubr::L UP(x,R),[Lc1,Lc2]::L UP(x,R))

     subresultantSequenceNext(LcsI:L UP(x,R)):L UP(x,R) ==
       p2:UP(x,R):=last LcsI
       p1:UP(x,R):=first rest reverse LcsI
       d1:NNI:=degree(p1)
       d2:NNI:=degree(p2)
       in1:NNI:=(d1-1)::NNI
       d2 = in1 =>
         pr1:UP(x,R):=
           (pseudoRemainder(p1,p2) exquo (leadingCoefficient(p1))**2)::UP(x,R)
         append(LcsI:L UP(x,R),[pr1]:L UP(x,R))
       d2 < in1 =>
         c1:R:=leadingCoefficient(p1)
         pr1:UP(x,R):=
          (leadingCoefficient(p2)**((in1-d2)::NNI)*p2 exquo
              c1**((in1-d2)::NNI))::UP(x,R)
         pr2:UP(x,R):=
           (pseudoRemainder(p1,p2) exquo (-c1)**((in1-d2+2)::NNI))::UP(x,R)
         LSub:L UP(x,R):=[pr1,pr2]
         for k in ((d2+1)::INT)..((in1-1)::INT) repeat
           LSub:L UP(x,R):=append([0]:L UP(x,R),LSub:L UP(x,R))
         append(LcsI:L UP(x,R),LSub:L UP(x,R))

     subresultantSequenceInner(p1,p2):L UP(x,R) ==
       Lin:L UP(x,R):=subresultantSequenceBegin(p1:UP(x,R),p2:UP(x,R))
       indf:NNI:= if not(Lin.last::UP(x,R) = 0) then degree(Lin.last::UP(x,R))
                                               else 0
       while not(indf = 0) repeat
         Lin:L UP(x,R):=subresultantSequenceNext(Lin:L UP(x,R))
         indf:NNI:= if not(Lin.last::UP(x,R)=0) then degree(Lin.last::UP(x,R))
                                               else 0
       for j in #(Lin:L UP(x,R))..degree(p1) repeat
         Lin:L UP(x,R):=append(Lin:L UP(x,R),[0]:L UP(x,R))
       Lin


-- Computation of the subresultant sequence Sres(j)(P,p,Q,q) when:
--             deg(P) = p   and   deg(Q) = q   and   p > q

     subresultantSequence(p1,p2):L UP(x,R) ==
       p:NNI:=degree(p1)
       q:NNI:=degree(p2)
       List1:L UP(x,R):=subresultantSequenceInner(p1,p2)
       List2:L UP(x,R):=[p1,p2]
       c1:R:=leadingCoefficient(p1)
       for j in 3..#(List1) repeat
         Pr0:UP(x,R):=List1.j
         Pr1:UP(x,R):=(Pr0 exquo c1**((p-q-1)::NNI))::UP(x,R)
         List2:L UP(x,R):=append(List2:L UP(x,R),[Pr1]:L UP(x,R))
       List2

-- Computation of the delta function:

     delta(int1:NNI):R ==
       (-1)**((int1*(int1+1) exquo 2)::NNI)

-- Computation of the Sturm-Habicht sequence of two polynomials P and Q
-- in R[x] where R is an ordered integral domaine

     polsth1(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) ==
       sc1:R:=(sign(c1))::R
       Pr1:UP(x,R):=pseudoRemainder(differentiate(p1)*p2,p1)
       Pr2:UP(x,R):=(Pr1 exquo c1**(q::NNI))::UP(x,R)
       c2:R:=leadingCoefficient(Pr2)
       r:NNI:=degree(Pr2)
       Pr3:UP(x,R):=monomial(sc1**((p-r-1)::NNI),0)*p1
       Pr4:UP(x,R):=monomial(sc1**((p-r-1)::NNI),0)*Pr2
       Listf:L UP(x,R):=[Pr3,Pr4]
       if r < p-1 then
         Pr5:UP(x,R):=monomial(delta((p-r-1)::NNI)*c2**((p-r-1)::NNI),0)*Pr2
         for j in ((r+1)::INT)..((p-2)::INT) repeat
           Listf:L UP(x,R):=append(Listf:L UP(x,R),[0]:L UP(x,R))
         Listf:L UP(x,R):=append(Listf:L UP(x,R),[Pr5]:L UP(x,R))
       if Pr1=0 then List1:L UP(x,R):=Listf
                else List1:L UP(x,R):=subresultantSequence(p1,Pr2)
       List2:L UP(x,R):=[]
       for j in 0..((r-1)::INT) repeat
         Pr6:UP(x,R):=monomial(delta((p-j-1)::NNI),0)*List1.((p-j+1)::NNI)
         List2:L UP(x,R):=append([Pr6]:L UP(x,R),List2:L UP(x,R))
       append(Listf:L UP(x,R),List2:L UP(x,R))

     polsth2(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) ==
       sc1:R:=(sign(c1))::R
       Pr1:UP(x,R):=monomial(sc1,0)*p1
       Pr2:UP(x,R):=differentiate(p1)*p2
       Pr3:UP(x,R):=monomial(sc1,0)*Pr2
       Listf:L UP(x,R):=[Pr1,Pr3]
       List1:L UP(x,R):=subresultantSequence(p1,Pr2)
       List2:L UP(x,R):=[]
       for j in 0..((p-2)::INT) repeat
         Pr4:UP(x,R):=monomial(delta((p-j-1)::NNI),0)*List1.((p-j+1)::NNI)
         Pr5:UP(x,R):=(Pr4 exquo c1)::UP(x,R)
         List2:L UP(x,R):=append([Pr5]:L UP(x,R),List2:L UP(x,R))
       append(Listf:L UP(x,R),List2:L UP(x,R))

     polsth3(p1,p:NNI,p2,q:NNI,c1:R):L UP(x,R) ==
       sc1:R:=(sign(c1))::R
       q1:NNI:=(q-1)::NNI
       v:NNI:=(p+q1)::NNI
       Pr1:UP(x,R):=monomial(delta(q1::NNI)*sc1**((q+1)::NNI),0)*p1
       Listf:L UP(x,R):=[Pr1]
       List1:L UP(x,R):=subresultantSequence(differentiate(p1)*p2,p1)
       List2:L UP(x,R):=[]
       for j in 0..((p-1)::NNI) repeat
         Pr2:UP(x,R):=monomial(delta((v-j)::NNI),0)*List1.((v-j+1)::NNI)
         Pr3:UP(x,R):=(Pr2 exquo c1)::UP(x,R)
         List2:L UP(x,R):=append([Pr3]:L UP(x,R),List2:L UP(x,R))
       append(Listf:L UP(x,R),List2:L UP(x,R))

     SturmHabichtSequence(p1,p2):L UP(x,R) ==
       p:NNI:=degree(p1)
       q:NNI:=degree(p2)
       c1:R:=leadingCoefficient(p1)
       c1 = 1 or q = 1 => polsth1(p1,p,p2,q,c1)
       q = 0 => polsth2(p1,p,p2,q,c1)
       polsth3(p1,p,p2,q,c1)


-- Computation of the Sturm-Habicht principal coefficients of two
-- polynomials P and Q in R[x] where R is an ordered integral domain

     SturmHabichtCoefficients(p1,p2):L R ==
       List1:L UP(x,R):=SturmHabichtSequence(p1,p2)
       qp:NNI:=#(List1)::NNI
       [coefficient(p,(qp-j)::NNI) for p in List1 for j in 1..qp]


-- Computation of the number of sign variations of a list of non zero
-- elements in an ordered integral domain

     variation(Lsig:L R):INT ==
       size?(Lsig,1) => 0
       elt1:R:=first Lsig
       elt2:R:=Lsig.2
       sig1:R:=(sign(elt1*elt2))::R
       List1:L R:=rest Lsig
       sig1 = 1 => variation List1
       1+variation List1


-- Computation of the number of sign permanences of a list of non zero
-- elements in an ordered integral domain

     permanence(Lsig:L R):INT ==
       size?(Lsig,1) => 0
       elt1:R:=first Lsig
       elt2:R:=Lsig.2
       sig1:R:=(sign(elt1*elt2))::R
       List1:L R:=rest Lsig
       sig1 = -1 => permanence List1
       1+permanence List1


-- Computation of the functional W which works over a list of elements
-- in an ordered integral domain, with non zero first element

     qzeros(Lsig:L R):L R ==
       while last Lsig = 0 repeat
         Lsig:L R:=reverse rest reverse Lsig
       Lsig

     epsil(int1:NNI,elt1:R,elt2:R):INT ==
       int1 = 0 => 0
       odd? int1 => 0
       ct1:INT:=if elt1 > 0 then 1 else -1
       ct2:INT:=if elt2 > 0 then 1 else -1
       ct3:NNI:=(int1 exquo 2)::NNI
       ct4:INT:=(ct1*ct2)::INT
       ((-1)**(ct3::NNI))*ct4

     numbnce(Lsig:L R):NNI ==
       null Lsig => 0
       eltp:R:=Lsig.1
       eltp = 0 => 0
       1 + numbnce(rest Lsig)

     numbce(Lsig:L R):NNI ==
       null Lsig => 0
       eltp:R:=Lsig.1
       not(eltp = 0) => 0
       1 + numbce(rest Lsig)

     wfunctaux(Lsig:L R):INT ==
       null Lsig => 0
       List2:L R:=[]
       List1:L R:=Lsig:L R
       cont1:NNI:=numbnce(List1:L R)
       for j in 1..cont1 repeat
         List2:L R:=append(List2:L R,[first List1]:L R)
         List1:L R:=rest List1
       ind2:INT:=0
       cont2:NNI:=numbce(List1:L R)
       for j in 1..cont2 repeat
         List1:L R:=rest List1
         ind2:INT:=epsil(cont2:NNI,last List2,first List1)
       ind3:INT:=permanence(List2:L R)-variation(List2:L R)
       ind4:INT:=ind2+ind3
       ind4+wfunctaux(List1:L R)

     wfunct(Lsig:L R):INT ==
       List1:L R:=qzeros(Lsig:L R)
       wfunctaux(List1:L R)


-- Computation of the integer number:
--    #[{a in Rc(R)/P(a)=0 Q(a)>0}] - #[{a in Rc(R)/P(a)=0 Q(a)<0}]
-- where:
--    - R is an ordered integral domain,
--    - Rc(R) is the real clousure of R,
--    - P and Q are polynomials in R[x],
--    - by #[A] we note the cardinal of the set A

-- In particular:
--     - SturmHabicht(P,1) is the number of "real" roots of P,
--     - SturmHabicht(P,Q**2) is the number of "real" roots of P making Q neq 0

     SturmHabicht(p1,p2):INT ==
       p2 = 0 => 0
       degree(p1:UP(x,R)) = 0 => 0
       List1:L UP(x,R):=SturmHabichtSequence(p1,p2)
       qp:NNI:=#(List1)::NNI
       wfunct [coefficient(p,(qp-j)::NNI) for p in List1 for j in 1..qp]

     countRealRoots(p1):INT == SturmHabicht(p1,1)

     if R has GcdDomain then

        SturmHabichtMultiple(p1,p2):INT ==
          p2 = 0 => 0
          degree(p1:UP(x,R)) = 0 => 0
          SH:L UP(x,R):=SturmHabichtSequence(p1,p2)
          qp:NNI:=#(SH)::NNI
          ans:= wfunct [coefficient(p,(qp-j)::NNI) for p in SH for j in 1..qp]
          SH:=reverse SH
          while first SH = 0 repeat SH:=rest SH
          degree first SH = 0 => ans
          -- OK: it probably wasn't square free, so this item is probably the 
          -- gcd of p1 and p1'
          -- unless p1 and p2 have a factor in common (naughty!)
          differentiate(p1) exquo first SH case UP(x,R) =>
             -- it was the gcd of p1 and p1'
             ans+SturmHabichtMultiple(first SH,p2)
          sqfr:=factorList squareFree p1
          #sqfr = 1 and sqfr.first.xpnt=1 => ans
          reduce("+",[f.xpnt*SturmHabicht(f.fctr,p2) for f in sqfr])

        countRealRootsMultiple(p1):INT == SturmHabichtMultiple(p1,1)