This file is indexed.

/usr/share/axiom-20170501/src/algebra/SINT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
)abbrev domain SINT SingleInteger

-- following patch needed to deal with *:(I,%) -> %
-- affects behavior of SourceLevelSubset
--)bo $noSubsets := true
-- No longer - JHD !! still needed 5/3/91 BMT

++ Author:  Michael Monagan
++ Date Created: January 1988
++ Change History:
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description:
++ SingleInteger is intended to support machine integer arithmetic.

SingleInteger() : SIG == CODE where

  SIG ==> Join(IntegerNumberSystem,Logic,OpenMath) with

   canonical
     ++ \spad{canonical} means that mathematical equality is 
     ++ implied by data structure equality.

   canonicalsClosed
     ++ \spad{canonicalClosed} means two positives multiply to 
     ++ give positive.

   noetherian
     ++ \spad{noetherian} all ideals are finitely generated 
     ++ (in fact principal).

   max : () -> %
     ++ max() returns the largest single integer.

   min : () -> %
     ++ min() returns the smallest single integer.

   -- bit operations

   "not" : % -> %
     ++ not(n) returns the bit-by-bit logical not of the single integer n.

   "~" : % -> %
     ++  ~ n returns the bit-by-bit logical not of the single integer n.

   "/\" : (%, %) -> %
     ++ \axiom{n /\ m}  returns the bit-by-bit logical and of
     ++ the single integers n and m.

   "\/" : (%, %) -> %
     ++ \axiom{n \/ m}  returns the bit-by-bit logical or of
     ++ the single integers n and m.

   "xor" : (%, %) -> %
     ++ xor(n,m)  returns the bit-by-bit logical xor of
     ++ the single integers n and m.

   Not : % -> %
     ++ Not(n) returns the bit-by-bit logical not of the single integer n.

   And : (%,%) -> %
     ++ And(n,m)  returns the bit-by-bit logical and of
     ++ the single integers n and m.

   Or : (%,%) -> %
     ++ Or(n,m)  returns the bit-by-bit logical or of
     ++ the single integers n and m.

  CODE ==> add

   seed : % := 1$Lisp               -- for random()
   MAXINT ==> MOST_-POSITIVE_-FIXNUM$Lisp
   MININT ==> MOST_-NEGATIVE_-FIXNUM$Lisp
   BASE ==> 67108864$Lisp           -- 2**26
   MULTIPLIER ==> 314159269$Lisp    -- from Knuth's table
   MODULUS ==> 2147483647$Lisp      -- 2**31-1

   writeOMSingleInt(dev: OpenMathDevice, x: %): Void ==
    if x < 0 then
      OMputApp(dev)
      OMputSymbol(dev, "arith1", "unary_minus")
      OMputInteger(dev, convert(-x))
      OMputEndApp(dev)
    else
      OMputInteger(dev, convert(x))

   OMwrite(x: %): String ==
    s: String := ""
    sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
    dev: OpenMathDevice := OMopenString(sp @ String, OMencodingXML)
    OMputObject(dev)
    writeOMSingleInt(dev, x)
    OMputEndObject(dev)
    OMclose(dev)
    s := OM_-STRINGPTRTOSTRING(sp)$Lisp @ String
    s

   OMwrite(x: %, wholeObj: Boolean): String ==
    s: String := ""
    sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
    dev: OpenMathDevice := OMopenString(sp @ String, OMencodingXML)
    if wholeObj then
      OMputObject(dev)
    writeOMSingleInt(dev, x)
    if wholeObj then
      OMputEndObject(dev)
    OMclose(dev)
    s := OM_-STRINGPTRTOSTRING(sp)$Lisp @ String
    s

   OMwrite(dev: OpenMathDevice, x: %): Void ==
    OMputObject(dev)
    writeOMSingleInt(dev, x)
    OMputEndObject(dev)

   OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
    if wholeObj then
      OMputObject(dev)
    writeOMSingleInt(dev, x)
    if wholeObj then
      OMputEndObject(dev)

   reducedSystem m      == m pretend Matrix(Integer)

   coerce(x):OutputForm == (convert(x)@Integer)::OutputForm

   convert(x:%):Integer == x pretend Integer

   i:Integer * y:%      == i::% * y

   0         == 0$Lisp

   1         == 1$Lisp

   base()    == 2$Lisp

   max()     == MAXINT

   min()     == MININT

   x = y     == EQL(x,y)$Lisp

   _~ x      == LOGNOT(x)$Lisp

   not(x)    == LOGNOT(x)$Lisp

   _/_\(x,y) == LOGAND(x,y)$Lisp

   _\_/(x,y) == LOGIOR(x,y)$Lisp

   Not(x)    == LOGNOT(x)$Lisp

   And(x,y)  == LOGAND(x,y)$Lisp

   Or(x,y)   == LOGIOR(x,y)$Lisp

   xor(x,y)  == LOGXOR(x,y)$Lisp

   x < y     == QSLESSP(x,y)$Lisp

   inc x     == QSADD1(x)$Lisp

   dec x     == QSSUB1(x)$Lisp

   - x       == QSMINUS(x)$Lisp

   x + y     == QSPLUS(x,y)$Lisp

   x:% - y:% == QSDIFFERENCE(x,y)$Lisp

   x:% * y:% == QSTIMES(x,y)$Lisp

   x:% ** n:NonNegativeInteger == ((EXPT(x, n)$Lisp) @ Integer)::%

   x quo y   == QSQUOTIENT(x,y)$Lisp

   x rem y   == QSREMAINDER(x,y)$Lisp

   divide(x, y)   == CONS(QSQUOTIENT(x,y)$Lisp,QSREMAINDER(x,y)$Lisp)$Lisp

   gcd(x,y)  == GCD(x,y)$Lisp

   abs(x)    == QSABSVAL(x)$Lisp

   odd?(x)   == QSODDP(x)$Lisp

   zero?(x)  == QSZEROP(x)$Lisp

   one?(x)   == x = 1

   max(x,y)  == QSMAX(x,y)$Lisp

   min(x,y)  == QSMIN(x,y)$Lisp

   hash(x)   == SXHASH(x)$Lisp

   length(x) == INTEGER_-LENGTH(x)$Lisp

   shift(x,n)    == QSLEFTSHIFT(x,n)$Lisp

   mulmod(a,b,p) == QSMULTMOD(a,b,p)$Lisp

   addmod(a,b,p) == QSADDMOD(a,b,p)$Lisp

   submod(a,b,p) == QSDIFMOD(a,b,p)$Lisp

   negative?(x)  == QSMINUSP$Lisp x


   reducedSystem(m, v) ==
        [m pretend Matrix(Integer), v pretend Vector(Integer)]

   positiveRemainder(x,n) ==
      r := QSREMAINDER(x,n)$Lisp
      QSMINUSP(r)$Lisp =>
          QSMINUSP(n)$Lisp => QSDIFFERENCE(x, n)$Lisp
          QSPLUS(r, n)$Lisp
      r

   coerce(x:Integer):% ==
      (x <= max pretend Integer) and (x >= min pretend Integer) =>
        x pretend %
      error "integer too large to represent in a machine word"

   random() ==
      seed := REMAINDER(TIMES(MULTIPLIER,seed)$Lisp,MODULUS)$Lisp
      REMAINDER(seed,BASE)$Lisp

   random(n) == RANDOM(n)$Lisp

   UCA ==> Record(unit:%,canonical:%,associate:%)

   unitNormal x ==
      x < 0 => [-1,-x,-1]$UCA
      [1,x,1]$UCA

)bo $noSubsets := false