This file is indexed.

/usr/share/axiom-20170501/src/algebra/SMITH.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
)abbrev package SMITH SmithNormalForm
++ Author: Patrizia Gianni
++ Date Created: October 1992
++ Description:
++ \spadtype{SmithNormalForm} is a package
++ which provides some standard canonical forms for matrices.

SmithNormalForm(R,Row,Col,M) : SIG == CODE where
  R   : EuclideanDomain
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)

  I            ==> Integer
  NNI          ==> NonNegativeInteger
  HermiteForm  ==>   Record(Hermite:M,eqMat:M)
  SmithForm    ==>   Record(Smith : M, leftEqMat : M, rightEqMat : M) 
  PartialV     ==> Union(Col, "failed")
  Both         ==> Record(particular: PartialV, basis: List Col)

  SIG ==> with

    hermite : M -> M
      ++ \spad{hermite(m)} returns the Hermite normal form of the
      ++ matrix m.

    completeHermite : M -> HermiteForm
      ++ \spad{completeHermite} returns a record  that contains
      ++ the Hermite normal form H of the matrix and the equivalence matrix
      ++ U such that U*m = H

    smith : M -> M
      ++ \spad{smith(m)} returns the Smith Normal form of the matrix m.

    completeSmith : M ->  SmithForm
      ++ \spad{completeSmith} returns a record  that contains
      ++ the Smith normal form H of the matrix and the left and right
      ++ equivalence matrices U and V such that U*m*v = H

    diophantineSystem : (M,Col) -> Both
      ++ \spad{diophantineSystem(A,B)} returns a particular integer solution and 
      ++ an integer  basis  of the equation \spad{AX = B}.

  CODE ==> add

    MATCAT1 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
    MATCAT2 ==> MatrixCategoryFunctions2(QF,Row2,Col2,M2,R,Row,Col,M)
    QF      ==> Fraction R
    Row2    ==> Vector QF
    Col2    ==> Vector QF
    M2      ==> Matrix QF

                 ------  Local Functions -----
    elRow1       :   (M,I,I)         ->  M
    elRow2       :  (M,R,I,I)        ->  M
    elColumn2    :  (M,R,I,I)        ->  M
    isDiagonal?  :      M            ->  Boolean
    ijDivide     : (SmithForm ,I,I)  ->  SmithForm 
    lastStep     :   SmithForm       ->  SmithForm
    test1        :  (M,Col,NNI)      ->  Union(NNI, "failed")
    test2        : (M, Col,NNI,NNI)  ->  Union( Col, "failed")

     -- inconsistent system : case  0 = c -- 
    test1(sm:M,b:Col,m1 : NNI) : Union(NNI , "failed") ==
      km:=m1
      while zero? sm(km,km) repeat
        if not zero?(b(km)) then return "failed"
        km:= (km - 1) :: NNI
      km

    if Col has shallowlyMutable then

      test2(sm : M ,b : Col, n1:NNI,dk:NNI) : Union( Col, "failed") ==
        -- test divisibility --
        sol:Col := new(n1,0)
        for k in 1..dk repeat
          if (c:=(b(k) exquo sm(k,k))) case "failed" then return "failed"
          sol(k):= c::R
        sol

     -- test if the matrix is diagonal or pseudo-diagonal --   
    isDiagonal?(m : M) : Boolean ==
      m1:= nrows m
      n1:= ncols m
      for i in 1..m1 repeat
        for j in 1..n1 | (j ^= i) repeat
          if  not zero?(m(i,j)) then return false
      true
 
       -- elementary operation of first kind: exchange two rows --
    elRow1(m:M,i:I,j:I) : M ==
      vec:=row(m,i)
      setRow!(m,i,row(m,j))
      setRow!(m,j,vec)
      m

             -- elementary operation of second kind: add to row i--
                         -- a*row j  (i^=j) --
    elRow2(m : M,a:R,i:I,j:I) : M ==
      vec:= map(x +-> a*x,row(m,j))
      vec:=map("+",row(m,i),vec)
      setRow!(m,i,vec)
      m
             -- elementary operation of second kind: add to column i --
                           -- a*column j (i^=j) --
    elColumn2(m : M,a:R,i:I,j:I) : M ==
      vec:= map(x +-> a*x,column(m,j))
      vec:=map("+",column(m,i),vec)
      setColumn!(m,i,vec)
      m

       -- modify SmithForm in such a way that the term m(i,i) --
           -- divides the term m(j,j). m is diagonal --
    ijDivide(sf : SmithForm , i : I,j : I) : SmithForm ==
      m:=sf.Smith
      mii:=m(i,i)
      mjj:=m(j,j)
      extGcd:=extendedEuclidean(mii,mjj)
      d := extGcd.generator
      mii:=(mii exquo d)::R
      mjj := (mjj exquo d) :: R
      -- add to row j extGcd.coef1*row i --
      lMat:=elRow2(sf.leftEqMat,extGcd.coef1,j,i)
      -- switch rows i and j --
      lMat:=elRow1(lMat,i,j)
      -- add to row j -mii*row i --
      lMat := elRow2(lMat,-mii,j,i)
      m(j,j):= m(i,i) * mjj
      m(i,i):= d
      -- add to column i extGcd.coef2 * column j --
      rMat := elColumn2(sf.rightEqMat,extGcd.coef2,i,j)
      -- add to column j -mjj*column i --
      rMat:=elColumn2(rMat,-mjj,j,i)
      -- multiply by -1 column j --
      setColumn!(rMat,j,map(x +-> -1*x,column(rMat,j)))
      [m,lMat,rMat]
               

     -- given a diagonal matrix compute its Smith form --
    lastStep(sf : SmithForm) : SmithForm ==
      m:=sf.Smith
      m1:=min(nrows m,ncols m)
      for i in 1..m1 while (mii:=m(i,i)) ^=0 repeat
        for j in i+1..m1 repeat
          if (m(j,j) exquo mii) case "failed" then return
             lastStep(ijDivide(sf,i,j))
      sf

    -- given m and t row-equivalent matrices, with t in upper triangular --
          -- form  compute the matrix u such that u*m=t --
    findEqMat(m :  M,t : M) : Record(Hermite : M, eqMat : M) ==
      m1:=nrows m
      n1:=ncols m
      "and"/[zero? t(m1,j) for j in 1..n1] => -- there are 0 rows
         if "and"/[zero? t(1,j) for j in 1..n1] 
         then return [m,scalarMatrix(m1,1)]  -- m is the zero matrix
         mm:=horizConcat(m,scalarMatrix(m1,1))
         mmh:=rowEchelon mm
         [subMatrix(mmh,1,m1,1,n1), subMatrix(mmh,1,m1,n1+1,n1+m1)]
      u:M:=zero(m1,m1)
      j:=1
      while t(1,j)=0 repeat j:=j+1  -- there are 0 columns
      t1:=copy t
      mm:=copy m
      if j>1 then 
        t1:=subMatrix(t,1,m1,j,n1)
        mm:=subMatrix(m,1,m1,j,n1)
      t11:=t1(1,1)
      for i in 1..m1 repeat
        u(i,1) := (mm(i,1) exquo t11) :: R
        for j in 2..m1 repeat
          j0:=j
          while zero?(tjj:=t1(j,j0)) repeat j0:=j0+1
          u(i,j) :=
           ((mm(i,j0)-("+"/[u(i,k)*t1(k,j0) for k in 1..(j-1)])) exquo tjj)::R
      u1:M2:= map(x +-> x::QF,u)$MATCAT1
      [t,map(retract$QF,(inverse u1)::M2)$MATCAT2]

                --- Hermite normal form of m ---
    hermite(m:M) : M == rowEchelon m

     -- Hermite normal form and equivalence matrix --
    completeHermite(m : M) : Record(Hermite : M, eqMat : M) ==
      findEqMat(m,rowEchelon m)
 
    smith(m : M) : M == completeSmith(m).Smith

    completeSmith(m : M) : Record(Smith : M, leftEqMat : M, rightEqMat : M) ==
      cm1:=completeHermite m
      leftm:=cm1.eqMat
      m1:=cm1.Hermite
      isDiagonal? m1 => lastStep([m1,leftm,scalarMatrix(ncols m,1)])
      nr:=nrows m
      cm1:=completeHermite transpose m1
      rightm:= transpose cm1.eqMat
      m1:=cm1.Hermite
      isDiagonal? m1 => 
        cm2:=lastStep([m1,leftm,rightm])
        nrows(m:=cm2.Smith) = nr => cm2
        [transpose m,cm2.leftEqMat, cm2.rightEqMat]
      cm2:=completeSmith m1
      cm2:=lastStep([cm2.Smith,transpose(cm2.rightEqMat)*leftm,
                rightm*transpose(cm2.leftEqMat)])
      nrows(m:=cm2.Smith) = nr => cm2
      [transpose m, cm2.leftEqMat, cm2.rightEqMat]

    -- Find the solution in R of the linear system mX = b --
    diophantineSystem(m : M, b : Col) : Both  ==
      sf:=completeSmith m
      sm:=sf.Smith
      m1:=nrows sm
      lm:=sf.leftEqMat
      b1:Col:= lm* b
      (t1:=test1(sm,b1,m1)) case "failed" => ["failed",empty()]
      dk:=t1 :: NNI
      n1:=ncols sm
      (t2:=test2(sm,b1,n1,dk)) case "failed" => ["failed",empty()]
      rm := sf.rightEqMat
      sol:=rm*(t2 :: Col)  -- particular solution
      dk = n1  => [sol,list new(n1,0)]
      lsol:List Col := [column(rm,i) for i in (dk+1)..n1]
      [sol,lsol]