/usr/share/axiom-20170501/src/algebra/SMITH.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | )abbrev package SMITH SmithNormalForm
++ Author: Patrizia Gianni
++ Date Created: October 1992
++ Description:
++ \spadtype{SmithNormalForm} is a package
++ which provides some standard canonical forms for matrices.
SmithNormalForm(R,Row,Col,M) : SIG == CODE where
R : EuclideanDomain
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
M : MatrixCategory(R,Row,Col)
I ==> Integer
NNI ==> NonNegativeInteger
HermiteForm ==> Record(Hermite:M,eqMat:M)
SmithForm ==> Record(Smith : M, leftEqMat : M, rightEqMat : M)
PartialV ==> Union(Col, "failed")
Both ==> Record(particular: PartialV, basis: List Col)
SIG ==> with
hermite : M -> M
++ \spad{hermite(m)} returns the Hermite normal form of the
++ matrix m.
completeHermite : M -> HermiteForm
++ \spad{completeHermite} returns a record that contains
++ the Hermite normal form H of the matrix and the equivalence matrix
++ U such that U*m = H
smith : M -> M
++ \spad{smith(m)} returns the Smith Normal form of the matrix m.
completeSmith : M -> SmithForm
++ \spad{completeSmith} returns a record that contains
++ the Smith normal form H of the matrix and the left and right
++ equivalence matrices U and V such that U*m*v = H
diophantineSystem : (M,Col) -> Both
++ \spad{diophantineSystem(A,B)} returns a particular integer solution and
++ an integer basis of the equation \spad{AX = B}.
CODE ==> add
MATCAT1 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
MATCAT2 ==> MatrixCategoryFunctions2(QF,Row2,Col2,M2,R,Row,Col,M)
QF ==> Fraction R
Row2 ==> Vector QF
Col2 ==> Vector QF
M2 ==> Matrix QF
------ Local Functions -----
elRow1 : (M,I,I) -> M
elRow2 : (M,R,I,I) -> M
elColumn2 : (M,R,I,I) -> M
isDiagonal? : M -> Boolean
ijDivide : (SmithForm ,I,I) -> SmithForm
lastStep : SmithForm -> SmithForm
test1 : (M,Col,NNI) -> Union(NNI, "failed")
test2 : (M, Col,NNI,NNI) -> Union( Col, "failed")
-- inconsistent system : case 0 = c --
test1(sm:M,b:Col,m1 : NNI) : Union(NNI , "failed") ==
km:=m1
while zero? sm(km,km) repeat
if not zero?(b(km)) then return "failed"
km:= (km - 1) :: NNI
km
if Col has shallowlyMutable then
test2(sm : M ,b : Col, n1:NNI,dk:NNI) : Union( Col, "failed") ==
-- test divisibility --
sol:Col := new(n1,0)
for k in 1..dk repeat
if (c:=(b(k) exquo sm(k,k))) case "failed" then return "failed"
sol(k):= c::R
sol
-- test if the matrix is diagonal or pseudo-diagonal --
isDiagonal?(m : M) : Boolean ==
m1:= nrows m
n1:= ncols m
for i in 1..m1 repeat
for j in 1..n1 | (j ^= i) repeat
if not zero?(m(i,j)) then return false
true
-- elementary operation of first kind: exchange two rows --
elRow1(m:M,i:I,j:I) : M ==
vec:=row(m,i)
setRow!(m,i,row(m,j))
setRow!(m,j,vec)
m
-- elementary operation of second kind: add to row i--
-- a*row j (i^=j) --
elRow2(m : M,a:R,i:I,j:I) : M ==
vec:= map(x +-> a*x,row(m,j))
vec:=map("+",row(m,i),vec)
setRow!(m,i,vec)
m
-- elementary operation of second kind: add to column i --
-- a*column j (i^=j) --
elColumn2(m : M,a:R,i:I,j:I) : M ==
vec:= map(x +-> a*x,column(m,j))
vec:=map("+",column(m,i),vec)
setColumn!(m,i,vec)
m
-- modify SmithForm in such a way that the term m(i,i) --
-- divides the term m(j,j). m is diagonal --
ijDivide(sf : SmithForm , i : I,j : I) : SmithForm ==
m:=sf.Smith
mii:=m(i,i)
mjj:=m(j,j)
extGcd:=extendedEuclidean(mii,mjj)
d := extGcd.generator
mii:=(mii exquo d)::R
mjj := (mjj exquo d) :: R
-- add to row j extGcd.coef1*row i --
lMat:=elRow2(sf.leftEqMat,extGcd.coef1,j,i)
-- switch rows i and j --
lMat:=elRow1(lMat,i,j)
-- add to row j -mii*row i --
lMat := elRow2(lMat,-mii,j,i)
m(j,j):= m(i,i) * mjj
m(i,i):= d
-- add to column i extGcd.coef2 * column j --
rMat := elColumn2(sf.rightEqMat,extGcd.coef2,i,j)
-- add to column j -mjj*column i --
rMat:=elColumn2(rMat,-mjj,j,i)
-- multiply by -1 column j --
setColumn!(rMat,j,map(x +-> -1*x,column(rMat,j)))
[m,lMat,rMat]
-- given a diagonal matrix compute its Smith form --
lastStep(sf : SmithForm) : SmithForm ==
m:=sf.Smith
m1:=min(nrows m,ncols m)
for i in 1..m1 while (mii:=m(i,i)) ^=0 repeat
for j in i+1..m1 repeat
if (m(j,j) exquo mii) case "failed" then return
lastStep(ijDivide(sf,i,j))
sf
-- given m and t row-equivalent matrices, with t in upper triangular --
-- form compute the matrix u such that u*m=t --
findEqMat(m : M,t : M) : Record(Hermite : M, eqMat : M) ==
m1:=nrows m
n1:=ncols m
"and"/[zero? t(m1,j) for j in 1..n1] => -- there are 0 rows
if "and"/[zero? t(1,j) for j in 1..n1]
then return [m,scalarMatrix(m1,1)] -- m is the zero matrix
mm:=horizConcat(m,scalarMatrix(m1,1))
mmh:=rowEchelon mm
[subMatrix(mmh,1,m1,1,n1), subMatrix(mmh,1,m1,n1+1,n1+m1)]
u:M:=zero(m1,m1)
j:=1
while t(1,j)=0 repeat j:=j+1 -- there are 0 columns
t1:=copy t
mm:=copy m
if j>1 then
t1:=subMatrix(t,1,m1,j,n1)
mm:=subMatrix(m,1,m1,j,n1)
t11:=t1(1,1)
for i in 1..m1 repeat
u(i,1) := (mm(i,1) exquo t11) :: R
for j in 2..m1 repeat
j0:=j
while zero?(tjj:=t1(j,j0)) repeat j0:=j0+1
u(i,j) :=
((mm(i,j0)-("+"/[u(i,k)*t1(k,j0) for k in 1..(j-1)])) exquo tjj)::R
u1:M2:= map(x +-> x::QF,u)$MATCAT1
[t,map(retract$QF,(inverse u1)::M2)$MATCAT2]
--- Hermite normal form of m ---
hermite(m:M) : M == rowEchelon m
-- Hermite normal form and equivalence matrix --
completeHermite(m : M) : Record(Hermite : M, eqMat : M) ==
findEqMat(m,rowEchelon m)
smith(m : M) : M == completeSmith(m).Smith
completeSmith(m : M) : Record(Smith : M, leftEqMat : M, rightEqMat : M) ==
cm1:=completeHermite m
leftm:=cm1.eqMat
m1:=cm1.Hermite
isDiagonal? m1 => lastStep([m1,leftm,scalarMatrix(ncols m,1)])
nr:=nrows m
cm1:=completeHermite transpose m1
rightm:= transpose cm1.eqMat
m1:=cm1.Hermite
isDiagonal? m1 =>
cm2:=lastStep([m1,leftm,rightm])
nrows(m:=cm2.Smith) = nr => cm2
[transpose m,cm2.leftEqMat, cm2.rightEqMat]
cm2:=completeSmith m1
cm2:=lastStep([cm2.Smith,transpose(cm2.rightEqMat)*leftm,
rightm*transpose(cm2.leftEqMat)])
nrows(m:=cm2.Smith) = nr => cm2
[transpose m, cm2.leftEqMat, cm2.rightEqMat]
-- Find the solution in R of the linear system mX = b --
diophantineSystem(m : M, b : Col) : Both ==
sf:=completeSmith m
sm:=sf.Smith
m1:=nrows sm
lm:=sf.leftEqMat
b1:Col:= lm* b
(t1:=test1(sm,b1,m1)) case "failed" => ["failed",empty()]
dk:=t1 :: NNI
n1:=ncols sm
(t2:=test2(sm,b1,n1,dk)) case "failed" => ["failed",empty()]
rm := sf.rightEqMat
sol:=rm*(t2 :: Col) -- particular solution
dk = n1 => [sol,list new(n1,0)]
lsol:List Col := [column(rm,i) for i in (dk+1)..n1]
[sol,lsol]
|