This file is indexed.

/usr/share/axiom-20170501/src/algebra/SMTS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
)abbrev domain SMTS SparseMultivariateTaylorSeries
++ Authors: William Burge, Stephen Watt, Clifton Williamson
++ Date Created: 15 August 1988
++ Date Last Updated: 18 May 1991
++ Description:
++ This domain provides multivariate Taylor series with variables
++ from an arbitrary ordered set.  A Taylor series is represented
++ by a stream of polynomials from the polynomial domain SMP.
++ The nth element of the stream is a form of degree n.  SMTS is an
++ internal domain.

SparseMultivariateTaylorSeries(Coef,Var,SMP) : SIG == CODE where
  Coef : Ring
  Var : OrderedSet
  SMP : PolynomialCategory(Coef,IndexedExponents Var,Var)

  I   ==> Integer
  L   ==> List
  NNI ==> NonNegativeInteger
  OUT ==> OutputForm
  PS  ==> InnerTaylorSeries SMP
  RN  ==> Fraction Integer
  ST  ==> Stream
  StS ==> Stream SMP
  STT ==> StreamTaylorSeriesOperations SMP
  STF ==> StreamTranscendentalFunctions SMP
  ST2 ==> StreamFunctions2
  ST3 ==> StreamFunctions3
 
  SIG ==> MultivariateTaylorSeriesCategory(Coef,Var) with

    coefficient : (%,NNI) -> SMP
      ++ \spad{coefficient(s, n)} gives the terms of total degree n.
      ++
      ++X xts:=x::TaylorSeries Fraction Integer
      ++X t1:=sin(xts)
      ++X coefficient(t1,3)

    coefficients : % -> StS
      ++ \spad{coefficients(s)) gives a stream of coefficients of s,
      ++ for example, [coefficient(s,0), coefficient(s,1), ...]

    series : StS -> %
      ++ \spad(series(st)) creates a series from a stream of 
      ++ coefficients

    coerce : Var -> %
      ++ \spad{coerce(var)} converts a variable to a Taylor series

    coerce : SMP -> %
      ++ \spad{coerce(poly)} regroups the terms by total degree and forms
      ++ a series.

    "*" : (SMP,%)->%
      ++\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.

    csubst : (L Var,L StS) -> (SMP -> StS)
      ++\spad{csubst(a,b)} is for internal use only
 
    if Coef has Algebra Fraction Integer then

      integrate : (%,Var,Coef) -> %
        ++\spad{integrate(s,v,c)} is the integral of s with respect
        ++ to v and having c as the constant of integration.

      fintegrate : (() -> %,Var,Coef) -> %
        ++\spad{fintegrate(f,v,c)} is the integral of \spad{f()} with respect
        ++ to v and having c as the constant of integration.
        ++ The evaluation of \spad{f()} is delayed.
 
  CODE ==> PS add
 
    Rep := StS -- Below we use the fact that Rep of PS is Stream SMP.

    coefficientes(s:%):StS ==
      s::Rep

    series(st:StS):% ==
      st

    extend(x,n) == 
      extend(x,n + 1)$Rep

    complete x == 
      complete(x)$Rep

    stream(x:%):Rep == 
      x @ Rep

    evalstream:(%,L Var,L SMP) -> StS
    evalstream(s:%,lv:(L Var),lsmp:(L SMP)):(ST SMP) ==
      scan(0,_+$SMP,
        map((z1:SMP):SMP+->eval(z1,lv,lsmp),s pretend StS))$ST2(SMP,SMP)
 
    addvariable:(Var,InnerTaylorSeries Coef) -> %
    addvariable(v,s) ==
      ints := integers(0)$STT pretend ST NNI
      map((n1:NNI,c2:Coef):SMP+->monomial(c2 :: SMP,v,n1)$SMP,
             ints,s pretend ST Coef)$ST3(NNI,Coef,SMP)

    -- We can extract a polynomial giving the terms of given total degree 
    coefficient(s,n) == 
      elt(s,n + 1)$Rep  -- 1-based indexing for streams

    -- Here we have to take into account that we reduce the degree of each
    -- term of the stream by a constant
    coefficient(s:%,lv:List Var,ln:List NNI):% ==
      map ((z1:SMP):SMP +-> coefficient(z1,lv,ln),rest(s,reduce(_+,ln)))

    -- the coefficient of a particular monomial:
    coefficient(s:%,m:IndexedExponents Var):Coef ==
      n:=leadingCoefficient(mon:=m)
      while not zero?(mon:=reductum mon) repeat
        n:=n+leadingCoefficient mon
      coefficient(coefficient(s,n),m)
 
--% creation of series
 
    coerce(r:Coef) == 
      monom(r::SMP,0)$STT

    smp:SMP * p:% == 
      (((smp)    * (p @ Rep))$STT) @ %

    r:Coef * p:% ==  
      (((r::SMP) * (p @ Rep))$STT) @ %

    p:% * r:Coef ==  
      (((r::SMP) * (p @ Rep))$STT) @ %

    mts(p:SMP):% ==
      (uv := mainVariable p) case "failed" => monom(p,0)$STT
      v := uv :: Var
      s : % := 0
      up := univariate(p,v)
      while not zero? up repeat
        s := s + monomial(1,v,degree up) * mts(leadingCoefficient up)
        up := reductum up
      s
 
    coerce(p:SMP) == 
      mts p

    coerce(v:Var) == 
      v :: SMP :: %
 
    monomial(r:%,v:Var,n:NNI) ==
      r * monom(monomial(1,v,n)$SMP,n)$STT
 
--% evaluation
 
    substvar: (SMP,L Var,L %) -> %
    substvar(p,vl,q) ==
      null vl => monom(p,0)$STT
      (uv := mainVariable p) case "failed" => monom(p,0)$STT
      v := uv :: Var
      v = first vl =>
        s : % := 0
        up := univariate(p,v)
        while not zero? up repeat
          c := leadingCoefficient up
          s := s + first q ** degree up * substvar(c,rest vl,rest q)
          up := reductum up
        s
      substvar(p,rest vl,rest q)
 
    sortmfirst:(SMP,L Var,L %) -> %
    sortmfirst(p,vl,q) ==
      nlv : L Var := sort((v1:Var,v2:Var):Boolean +-> v1 > v2,vl)
      nq : L % := [q position$(L Var) (i,vl) for i in nlv]
      substvar(p,nlv,nq)
 
    csubst(vl,q) == 
      (p1:SMP):StS+->sortmfirst(p1,vl,q pretend L(%)) pretend StS
 
    restCheck(s:StS):StS ==
      -- checks that stream is null or first element is 0
      -- returns empty() or rest of stream
      empty? s => s
      not zero? frst s =>
        error "eval: constant coefficient should be 0"
      rst s
 
    eval(s:%,v:L Var,q:L %) ==
      #v ^= #q =>
        error "eval: number of variables should equal number of values"
      nq : L StS := [restCheck(i pretend StS) for i in q]
      addiag(map(csubst(v,nq),s pretend StS)$ST2(SMP,StS))$STT @ %
 
    substmts(v:Var,p:SMP,q:%):% ==
      up := univariate(p,v)
      ss : % := 0
      while not zero? up repeat
        d:=degree up
        c:SMP:=leadingCoefficient up
        ss := ss + c* q ** d
        up := reductum up
      ss
 
    subststream(v:Var,p:SMP,q:StS):StS==
      substmts(v,p,q @ %) pretend StS
 
    comp1:(Var,StS,StS) -> StS
    comp1(v,r,t)== 
      addiag(map((p1:SMP):StS +-> subststream(v,p1,t),r)$ST2(SMP,StS))$STT
 
    comp(v:Var,s:StS,t:StS):StS == delay
      empty? s => s
      f := frst s; r : StS := rst s;
      empty? r => s
      empty? t => concat(f,comp1(v,r,empty()$StS))
      not zero? frst t =>
        error "eval: constant coefficient should be zero"
      concat(f,comp1(v,r,rst t))
 
    eval(s:%,v:Var,t:%) == comp(v,s pretend StS,t pretend StS)
 
--% differentiation and integration
 
    differentiate(s:%,v:Var):% ==
      empty? s => 0
      map((z1:SMP):SMP +-> differentiate(z1,v),rst s)
 
    if Coef has Algebra Fraction Integer then
 
      (x:%) ** (r:RN) == 
        powern(r,stream x)$STT

      (r:RN) * (x:%)  == 
        map((z1:SMP):SMP +-> r*z1,stream x)$ST2(SMP,SMP) @ %

      (x:%) * (r:RN)  == 
        map((z1:SMP):SMP +-> z1*r,stream x)$ST2(SMP,SMP) @ %
 
      exp x == 
        exp(stream x)$STF

      log x == 
        log(stream x)$STF
 
      sin x == 
        sin(stream x)$STF

      cos x == 
        cos(stream x)$STF

      tan x == 
        tan(stream x)$STF

      cot x == 
        cot(stream x)$STF

      sec x == 
        sec(stream x)$STF

      csc x == 
        csc(stream x)$STF
 
      asin x == 
        asin(stream x)$STF

      acos x == 
        acos(stream x)$STF

      atan x == 
        atan(stream x)$STF

      acot x == 
        acot(stream x)$STF

      asec x == 
        asec(stream x)$STF

      acsc x == 
        acsc(stream x)$STF
 
      sinh x == 
        sinh(stream x)$STF

      cosh x == 
        cosh(stream x)$STF

      tanh x == 
        tanh(stream x)$STF

      coth x == 
        coth(stream x)$STF

      sech x == 
        sech(stream x)$STF

      csch x == 
        csch(stream x)$STF
 
      asinh x == 
        asinh(stream x)$STF

      acosh x == 
        acosh(stream x)$STF

      atanh x == 
        atanh(stream x)$STF

      acoth x == 
        acoth(stream x)$STF

      asech x == 
        asech(stream x)$STF

      acsch x == 
        acsch(stream x)$STF
 
      intsmp(v:Var,p: SMP): SMP ==
        up := univariate(p,v)
        ss : SMP := 0
        while not zero? up repeat
          d := degree up
          c := leadingCoefficient up
          ss := ss + inv((d+1) :: RN) * monomial(c,v,d+1)$SMP
          up := reductum up
        ss
 
      fintegrate(f,v,r) ==
        concat(r::SMP,delay map((z1:SMP):SMP +-> intsmp(v,z1),f() pretend StS))

      integrate(s,v,r) ==
        concat(r::SMP,map((z1:SMP):SMP +-> intsmp(v,z1),s pretend StS))
 
    -- If there is more than one term of the same order, group them.
    tout(p:SMP):OUT ==
      pe := p :: OUT
      monomial? p => pe
      paren pe
 
    -- check a global Lisp variable
    showAll?: () -> Boolean
    showAll?() == true
 
    coerce(s:%):OUT ==
      uu := s pretend Stream(SMP)
      empty? uu => (0$SMP) :: OUT
      n : NNI; count : NNI := _$streamCount$Lisp
      l : List OUT := empty()
      for n in 0..count while not empty? uu repeat
        if frst(uu) ^= 0 then l := concat(tout frst uu,l)
        uu := rst uu
      if showAll?() then
        for n in n.. while explicitEntries? uu and _
               not eq?(uu,rst uu) repeat
          if frst(uu) ^= 0 then l := concat(tout frst uu,l)
          uu := rst uu
      l :=
        explicitlyEmpty? uu => l
        eq?(uu,rst uu) and frst uu = 0 => l
        concat(prefix("O" :: OUT,[n :: OUT]),l)
      empty? l => (0$SMP) :: OUT
      reduce("+",reverse_! l)

    if Coef has Field then

         SF2==> StreamFunctions2

         p:% / r:Coef ==
           (map((z1:SMP):SMP +-> z1/$SMP r,stream p)$SF2(SMP,SMP)) @ %