This file is indexed.

/usr/share/axiom-20170501/src/algebra/SOLVEFOR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
)abbrev package SOLVEFOR PolynomialSolveByFormulas
++ Author: SMW June 86, BMT Sept 93
++ Description:
++ This package factors the formulas out of the general solve code,
++ allowing their recursive use over different domains.
++ Care is taken to introduce few radicals so that radical extension
++ domains can more easily simplify the results.

PolynomialSolveByFormulas(UP, F) : SIG == CODE where
  UP : UnivariatePolynomialCategory F
  F :  Field with

     "**": (%, Fraction Integer) -> %

  L  ==> List

  SIG ==> with

    solve : UP -> L F
      ++ solve(u) \undocumented

    particularSolution : UP -> F
      ++ particularSolution(u) \undocumented

    mapSolve : (UP, F -> F) -> Record(solns: L F,
                                           maps: L Record(arg:F,res:F))
      ++ mapSolve(u,f) \undocumented

    linear : UP -> L F
      ++ linear(u) \undocumented

    quadratic : UP -> L F
      ++ quadratic(u) \undocumented

    cubic : UP -> L F
      ++ cubic(u) \undocumented

    quartic : UP -> L F
      ++ quartic(u) \undocumented

        -- Arguments give coefs from high to low degree.

    linear : (F, F) -> L F
      ++ linear(f,g) \undocumented

    quadratic : (F, F, F) -> L F
      ++ quadratic(f,g,h) \undocumented

    cubic : (F, F, F, F) -> L F
      ++ cubic(f,g,h,i) \undocumented

    quartic : (F, F, F, F, F) -> L F
      ++ quartic(f,g,h,i,j) \undocumented

    aLinear : (F, F) -> F
      ++ aLinear(f,g) \undocumented

    aQuadratic : (F, F, F) -> F
      ++ aQuadratic(f,g,h) \undocumented

    aCubic : (F, F, F, F) -> F
      ++ aCubic(f,g,h,j) \undocumented

    aQuartic : (F, F, F, F, F) -> F
      ++ aQuartic(f,g,h,i,k) \undocumented

  CODE ==> add

        -----------------------------------------------------------------
        -- Stuff for mapSolve
        -----------------------------------------------------------------
        id ==> (IDENTITY$Lisp)

        maplist: List Record(arg: F, res: F) := []
        mapSolving?: Boolean := false
        -- map: F -> F := id #1    replaced with line below
        map: Boolean := false

        mapSolve(p, fn) ==
            -- map := fn #1   replaced with line below
            locmap: F -> F := x +-> fn x; map := id locmap
            mapSolving? := true;  maplist := []
            slist := solve p
            mapSolving? := false;
            -- map := id #1   replaced with line below
            locmap := x +-> id x; map := id locmap
            [slist, maplist]

        part(s: F): F ==
            not mapSolving? => s
            -- t := map s     replaced with line below
            t: F := SPADCALL(s, map)$Lisp
            t = s => s
            maplist := cons([t, s], maplist)
            t

        -----------------------------------------------------------------
        -- Entry points and error handling
        -----------------------------------------------------------------
        cc ==> coefficient

        -- local intsolve
        intsolve(u:UP):L(F) ==
            u := (factors squareFree u).1.factor
            n := degree u
            n=1 => linear    (cc(u,1), cc(u,0))
            n=2 => quadratic (cc(u,2), cc(u,1), cc(u,0))
            n=3 => cubic     (cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            n=4 => quartic   (cc(u,4), cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            error "All sqfr factors of polynomial must be of degree < 5"

        solve u ==
            ls := nil$L(F)
            for f in factors squareFree u repeat
               lsf := intsolve f.factor
               for i in 1..(f.exponent) repeat ls := [:lsf,:ls]
            ls

        particularSolution u ==
            u := (factors squareFree u).1.factor
            n := degree u
            n=1 => aLinear    (cc(u,1), cc(u,0))
            n=2 => aQuadratic (cc(u,2), cc(u,1), cc(u,0))
            n=3 => aCubic     (cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            n=4 => aQuartic   (cc(u,4), cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            error "All sqfr factors of polynomial must be of degree < 5"

        needDegree(n: Integer, u: UP): Boolean ==
            degree u = n => true
            error concat("Polynomial must be of degree ", n::String)

        needLcoef(cn: F): Boolean ==
            cn ^= 0 => true
            error "Leading coefficient must not be 0."

        needChar0(): Boolean ==
            characteristic()$F = 0 => true
            error "Formula defined only for fields of characteristic 0."

        linear u ==
            needDegree(1, u)
            linear (coefficient(u,1), coefficient(u,0))

        quadratic u ==
            needDegree(2, u)
            quadratic (coefficient(u,2), coefficient(u,1),
                       coefficient(u,0))

        cubic u ==
            needDegree(3, u)
            cubic (coefficient(u,3), coefficient(u,2),
                   coefficient(u,1), coefficient(u,0))

        quartic u ==
            needDegree(4, u)
            quartic (coefficient(u,4),coefficient(u,3),
                     coefficient(u,2),coefficient(u,1),coefficient(u,0))

        -----------------------------------------------------------------
        -- The formulas
        -----------------------------------------------------------------

        -- local function for testing equality of radicals.
        --  This function is necessary to detect at least some of the
        --  situations like sqrt(9)-3 = 0 --> false.
        equ(x:F,y:F):Boolean ==
            ( (recip(x-y)) case "failed" ) => true
            false

        linear(c1, c0) ==
            needLcoef c1
            [- c0/c1 ]

        aLinear(c1, c0) ==
            first linear(c1,c0)

        quadratic(c2, c1, c0) ==
            needLcoef c2; needChar0()
            (c0 = 0) => [0$F,:linear(c2, c1)]
            (c1 = 0) => [(-c0/c2)**(1/2),-(-c0/c2)**(1/2)]
            D := part(c1**2 - 4*c2*c0)**(1/2)
            [(-c1+D)/(2*c2), (-c1-D)/(2*c2)]

        aQuadratic(c2, c1, c0) ==
            needLcoef c2; needChar0()
            (c0 = 0) => 0$F
            (c1 = 0) => (-c0/c2)**(1/2)
            D := part(c1**2 - 4*c2*c0)**(1/2)
            (-c1+D)/(2*c2)

        w3: F := (-1 + (-3::F)**(1/2)) / 2::F

        cubic(c3, c2, c1, c0) ==
            needLcoef c3; needChar0()

            -- case one root = 0, not necessary but keeps result small
            (c0 = 0) => [0$F,:quadratic(c3, c2, c1)]
            a1 := c2/c3;  a2 := c1/c3;  a3 := c0/c3

            -- case x**3-a3 = 0, not necessary but keeps result small
            (a1 = 0 and a2 = 0) =>
                [ u*(-a3)**(1/3) for u in [1, w3, w3**2 ] ]

            -- case x**3 + a1*x**2 + a1**2*x/3 + a3 = 0, the general for-
            --   mula is not valid in this case, but solution is easy.
            P := part(-a1/3::F)
            equ(a1**2,3*a2) =>
              S := part((- a3 + (a1**3)/27::F)**(1/3))
              [ P + S*u for u in [1,w3,w3**2] ]

            -- general case
            Q := part((3*a2 - a1**2)/9::F)
            R := part((9*a1*a2 - 27*a3 - 2*a1**3)/54::F)
            D := part(Q**3 + R**2)**(1/2)
            S := part(R + D)**(1/3)
            -- S = 0 is done in the previous case
            [ P + S*u - Q/(S*u) for u in [1, w3, w3**2] ]

        aCubic(c3, c2, c1, c0) ==
            needLcoef c3; needChar0()
            (c0 = 0) => 0$F
            a1 := c2/c3;  a2 := c1/c3;  a3 := c0/c3
            (a1 = 0 and a2 = 0) => (-a3)**(1/3)
            P := part(-a1/3::F)
            equ(a1**2,3*a2) =>
              S := part((- a3 + (a1**3)/27::F)**(1/3))
              P + S
            Q := part((3*a2 - a1**2)/9::F)
            R := part((9*a1*a2 - 27*a3 - 2*a1**3)/54::F)
            D := part(Q**3 + R**2)**(1/2)
            S := part(R + D)**(1/3)
            P + S - Q/S

        quartic(c4, c3, c2, c1, c0) ==
            needLcoef c4; needChar0()

            -- case one root = 0, not necessary but keeps result small
            (c0 = 0) => [0$F,:cubic(c4, c3, c2, c1)]
            -- Make monic:
            a1 := c3/c4; a2 := c2/c4; a3 := c1/c4; a4 := c0/c4

            -- case x**4 + a4 = 0 <=> (x**2-sqrt(-a4))*(x**2+sqrt(-a4))
            -- not necessary but keeps result small.
            (a1 = 0 and a2 = 0 and a3 = 0) =>
                append( quadratic(1, 0, (-a4)**(1/2)),_
                        quadratic(1 ,0, -((-a4)**(1/2))) )

            -- Translate w = x+a1/4 to eliminate a1:  w**4+p*w**2+q*w+r
            p := part(a2-3*a1*a1/8::F)
            q := part(a3-a1*a2/2::F + a1**3/8::F)
            r := part(a4-a1*a3/4::F + a1**2*a2/16::F - 3*a1**4/256::F)
            -- t0 := the cubic resolvent of x**3-p*x**2-4*r*x+4*p*r-q**2
            -- The roots of the translated polynomial are those of
            -- two quadratics. (What about rt=0 ?)
            -- rt=0 can be avoided by picking a root ^= p of the cubic
            -- polynomial above. This is always possible provided that
            -- the input is squarefree. In this case the two other roots
            -- are +(-) 2*r**(1/2).
            if equ(q,0)            -- this means p is a root
              then t0 := part(2*(r**(1/2)))
              else t0 := aCubic(1, -p, -4*r, 4*p*r - q**2)
            rt    := part(t0 - p)**(1/2)
            slist := append( quadratic( 1,  rt, (-q/rt + t0)/2::F ),
                             quadratic( 1, -rt, ( q/rt + t0)/2::F ))
            -- Translate back:
            [s - a1/4::F for s in slist]

        aQuartic(c4, c3, c2, c1, c0) ==
            needLcoef c4; needChar0()
            (c0 = 0) => 0$F
            a1 := c3/c4; a2 := c2/c4; a3 := c1/c4; a4 := c0/c4
            (a1 = 0 and a2 = 0 and a3 = 0) => (-a4)**(1/4)
            p  := part(a2-3*a1*a1/8::F)
            q  := part(a3-a1*a2/2::F + a1**2*a1/8::F)
            r  := part(a4-a1*a3/4::F + a1**2*a2/16::F - 3*a1**4/256::F)
            if equ(q,0)
              then t0 := part(2*(r**(1/2)))
              else t0 := aCubic(1, -p, -4*r, 4*p*r - q**2)
            rt := part(t0 - p)**(1/2)
            s  := aQuadratic( 1,  rt, (-q/rt + t0)/2::F )
            s - a1/4::F