This file is indexed.

/usr/share/axiom-20170501/src/algebra/SOLVERAD.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
)abbrev package SOLVERAD RadicalSolvePackage
++ Author: P.Gianni
++ Date Created: Summer 1990
++ Date Last Updated: October 1991
++ References:
++ Description:
++ This package tries to find solutions
++ expressed in terms of radicals for systems of equations
++ of rational functions with coefficients in an integral domain R.

RadicalSolvePackage(R) : SIG == CODE where
  R : Join(EuclideanDomain, OrderedSet, CharacteristicZero)

  PI ==> PositiveInteger
  NNI==> NonNegativeInteger
  Z  ==> Integer
  B  ==> Boolean
  ST ==> String
  PR ==> Polynomial R
  UP ==> SparseUnivariatePolynomial PR
  LA ==> LocalAlgebra(PR, Z, Z)
  RF ==> Fraction PR
  RE ==> Expression R
  EQ ==> Equation
  SY ==> Symbol
  SU ==> SuchThat(List RE, List Equation RE)
  SUP==> SparseUnivariatePolynomial
  L  ==> List
  P  ==> Polynomial

  SOLVEFOR ==> PolynomialSolveByFormulas(SUP RE, RE)
  UPF2     ==> SparseUnivariatePolynomialFunctions2(PR,RE)

  SIG ==> with

    radicalSolve : (RF,SY) -> L EQ RE
      ++ radicalSolve(rf,x) finds the solutions expressed in terms of
      ++ radicals of the equation rf = 0 with respect to the symbol x,
      ++ where rf is a rational function.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X radicalSolve(b,x)

    radicalSolve : RF -> L EQ RE
      ++ radicalSolve(rf) finds the solutions expressed in terms of
      ++ radicals of the equation rf = 0, where rf is a
      ++ univariate rational function.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X radicalSolve(b)

    radicalSolve : (EQ RF,SY) -> L EQ RE
      ++ radicalSolve(eq,x) finds the solutions expressed in terms of
      ++ radicals of the equation of rational functions eq
      ++ with respect to the symbol x.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X radicalSolve(b=0,x)

    radicalSolve : EQ RF -> L EQ RE
      ++ radicalSolve(eq) finds the solutions expressed in terms of
      ++ radicals of the equation of rational functions eq
      ++ with respect to the unique symbol x appearing in eq.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X radicalSolve(b=0)

    radicalSolve : (L RF,L SY) -> L L EQ RE
      ++ radicalSolve(lrf,lvar) finds the solutions expressed in terms of
      ++ radicals of the system of equations lrf = 0 with
      ++ respect to the list of symbols lvar,
      ++ where lrf is a list of rational functions.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1)
      ++X radicalSolve([b,c],[x,y])

    radicalSolve : L RF -> L L EQ RE
      ++ radicalSolve(lrf) finds the solutions expressed in terms of
      ++ radicals of the system of equations lrf = 0, where lrf is a
      ++ system of univariate rational functions.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1)
      ++X radicalSolve([b,c])

    radicalSolve : (L EQ RF,L SY) -> L L EQ RE
      ++ radicalSolve(leq,lvar) finds the solutions expressed in terms of
      ++ radicals of the system of equations of rational functions leq
      ++ with respect to the list of symbols lvar.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1)
      ++X radicalSolve([b=0,c=0],[x,y])

    radicalSolve : L EQ RF -> L L EQ RE
      ++ radicalSolve(leq) finds the solutions expressed in terms of
      ++ radicals of the system of equations of rational functions leq
      ++ with respect to the unique symbol x appearing in leq.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1)
      ++X radicalSolve([b=0,c=0])

    radicalRoots : (RF,SY) -> L RE
      ++ radicalRoots(rf,x) finds the roots expressed in terms of radicals
      ++ of the rational function rf with respect to the symbol x.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X radicalRoots(b,x)

    radicalRoots : (L RF,L SY) -> L L RE
      ++ radicalRoots(lrf,lvar) finds the roots expressed in terms of
      ++ radicals of the list of rational functions lrf
      ++ with respect to the list of symbols lvar.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X c:Fraction(Polynomial(Integer)):=(y^2+4)/(y+1)
      ++X radicalRoots([b,c],[x,y])

    contractSolve : (EQ RF,SY) -> SU
      ++ contractSolve(eq,x) finds the solutions expressed in terms of
      ++ radicals of the equation of rational functions eq
      ++ with respect to the symbol x.  The result contains new
      ++ symbols for common subexpressions in order to reduce the
      ++ size of the output.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X contractSolve(b=0,x)

    contractSolve : (RF,SY) -> SU
      ++ contractSolve(rf,x) finds the solutions expressed in terms of
      ++ radicals of the equation rf = 0 with respect to the symbol x,
      ++ where rf is a rational function. The result contains  new
      ++ symbols for common subexpressions in order to reduce the
      ++ size of the output.
      ++
      ++X b:Fraction(Polynomial(Integer)):=(3*x^3+7)/(5*x^2-13)
      ++X contractSolve(b,x)

  CODE ==> add

        import DegreeReductionPackage(PR, R)
        import SOLVEFOR

        SideEquations: List EQ RE := []
        ContractSoln:  B := false

        ---- Local Function Declarations ----
        solveInner:(PR, SY, B) -> SU
        linear:    UP -> List RE
        quadratic: UP -> List RE
        cubic:     UP -> List RE
        quartic:   UP -> List RE
        rad:       PI -> RE
        wrap:      RE -> RE
        New:       RE -> RE
        makeEq : (List RE,L SY) -> L EQ RE
        select :    L L RE      -> L L RE
        isGeneric? :  (L PR,L SY)  ->  Boolean
        findGenZeros :  (L PR,L SY) -> L L RE
        findZeros   :   (L PR,L SY) -> L L RE


        New s ==
            s = 0 => 0
            S := new()$Symbol ::PR::RF::RE
            SideEquations := append([S = s], SideEquations)
            S

        linear u    == [(-coefficient(u,0))::RE /(coefficient(u,1))::RE]

        quadratic u == quadratic(map(coerce,u)$UPF2)$SOLVEFOR

        cubic u     == cubic(map(coerce,u)$UPF2)$SOLVEFOR

        quartic u   == quartic(map(coerce,u)$UPF2)$SOLVEFOR

        rad n       == n::Z::RE

        wrap s      == (ContractSoln => New s; s)


        ---- Exported Functions ----


       -- find the zeros of components in "generic" position --
        findGenZeros(rlp:L PR,rlv:L SY) : L L RE ==
         pp:=rlp.first
         v:=first rlv
         rlv:=rest rlv
         res:L L RE:=[]
         res:=append([reverse cons(r,[eval(
           (-coefficient(univariate(p,vv),0)::RE)/
            (leadingCoefficient univariate(p,vv))::RE,
              kernel(v)@Kernel(RE),r) for vv in rlv for p in rlp.rest])
                for r in radicalRoots(pp::RF,v)],res)
         res


        findZeros(rlp:L PR,rlv:L SY) : L L RE ==
         parRes:=[radicalRoots(p::RF,v) for p in rlp for v in rlv]
         parRes:=select parRes
         res:L L RE :=[]
         res1:L RE
         for par in parRes repeat
           res1:=[par.first]
           lv1:L Kernel(RE):=[kernel rlv.first]
           rlv1:=rlv.rest
           p1:=par.rest
           while p1^=[] repeat
             res1:=cons(eval(p1.first,lv1,res1),res1)
             p1:=p1.rest
             lv1:=cons(kernel rlv1.first,lv1)
             rlv1:=rlv1.rest
           res:=cons(res1,res)
         res

        radicalSolve(pol:RF,v:SY) ==
          [equation(v::RE,r) for r in radicalRoots(pol,v)]

        radicalSolve(p:RF) ==
          zero? p =>
             error "equation is always satisfied"
          lv:=removeDuplicates
             concat(variables numer p, variables denom p)
          empty? lv => error "inconsistent equation"
          #lv>1 => error "too many variables"
          radicalSolve(p,lv.first)

        radicalSolve(eq: EQ RF) ==
          radicalSolve(lhs eq -rhs eq)

        radicalSolve(eq: EQ RF,v:SY) ==
           radicalSolve(lhs eq - rhs eq,v)

        radicalRoots(lp: L RF,lv: L SY) ==
          parRes:=triangularSystems(lp,lv)$SystemSolvePackage(R)
          parRes= list [] => []
           -- select the components in "generic" form
          rlv:=reverse lv
          rpRes:=[reverse res for res in parRes]
          listGen:= [res for res in rpRes|isGeneric?(res,rlv)]
          result:L L RE:=[]
          if listGen^=[] then
            result:="append"/[findGenZeros(res,rlv) for res in listGen]
            for res in listGen repeat
                rpRes:=delete(rpRes,position(res,rpRes))
           --  non-generic components
          rpRes = [] => result
          append("append"/[findZeros(res,rlv) for res in rpRes],
                         result)

        radicalSolve(lp:L RF,lv:L SY) ==
          [makeEq(lres,lv) for lres in radicalRoots(lp,lv)]

        radicalSolve(lp: L RF) ==
          lv:="setUnion"/[setUnion(variables numer p,variables denom p)
                          for p in lp]
          [makeEq(lres,lv) for lres in radicalRoots(lp,lv)]

        radicalSolve(le:L EQ RF,lv:L SY) ==
          lp:=[rhs p -lhs p for p in le]
          [makeEq(lres,lv) for lres in radicalRoots(lp,lv)]

        radicalSolve(le: L EQ RF) ==
          lp:=[rhs p -lhs p for p in le]
          lv:="setUnion"/[setUnion(variables numer p,variables denom p)
                          for p in lp]
          [makeEq(lres,lv) for lres in radicalRoots(lp,lv)]

        contractSolve(eq:EQ RF, v:SY)==
           solveInner(numer(lhs eq - rhs eq), v, true)

        contractSolve(pq:RF, v:SY) == solveInner(numer pq, v, true)

        radicalRoots(pq:RF, v:SY) == lhs solveInner(numer pq, v, false)


       -- test if the ideal is radical in generic position --
        isGeneric?(rlp:L PR,rlv:L SY) : Boolean ==
          "and"/[degree(f,x)=1 for f in rest rlp  for x in rest rlv]

        ---- select  the univariate factors
        select(lp:L L RE) : L L RE ==
          lp=[] => list []
          [:[cons(f,lsel) for lsel in select lp.rest] for f in lp.first]

        ---- Local Functions ----
       -- construct the equation
        makeEq(nres:L RE,lv:L SY) : L EQ RE ==
          [equation(x :: RE,r) for x in lv for r in nres]

        solveInner(pq:PR,v:SY,contractFlag:B) ==
            SideEquations := []
            ContractSoln  := contractFlag

            factors:= factors
               (factor pq)$MultivariateFactorize(SY,IndexedExponents SY,R,PR)

            constants:  List PR     := []
            unsolved:   List PR     := []
            solutions:  List RE     := []

            for f in factors repeat
                ff:=f.factor
                ^ member?(v, variables (ff)) =>
                    constants := cons(ff, constants)
                u := univariate(ff, v)
                t := reduce u
                u := t.pol
                n := degree u
                l: List RE :=
                    n = 1 => linear u
                    n = 2 => quadratic u
                    n = 3 => cubic u
                    n = 4 => quartic u
                    unsolved := cons(ff, unsolved)
                    []
                for s in l repeat
                    if t.deg > 1 then s := wrap s
                    T0 := expand(s, t.deg)
                    for i in 1..f.exponent repeat
                        solutions := append(T0, solutions)
                    re := SideEquations
            [solutions, SideEquations]$SU