This file is indexed.

/usr/share/axiom-20170501/src/algebra/SPFCAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
)abbrev category SPFCAT SpecialFunctionCategory
++ Author: Manuel Bronstein
++ Date Last Updated: 11 May 1993
++ Description:
++ Category for the other special functions;

SpecialFunctionCategory() : Category == SIG where

  SIG ==> with

    abs : $ -> $
      ++ abs(x) returns the absolute value of x.

    Gamma : $ -> $
      ++ Gamma(x) is the Euler Gamma function.

    Beta : ($,$)->$
      ++ Beta(x,y) is \spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.

    digamma : $ -> $
      ++ digamma(x) is the logarithmic derivative of \spad{Gamma(x)}
      ++ (often written \spad{psi(x)} in the literature).

    polygamma : ($, $) -> $
      ++ polygamma(k,x) is the \spad{k-th} derivative of \spad{digamma(x)},
      ++ (often written \spad{psi(k,x)} in the literature).

    Gamma : ($, $) -> $
      ++ Gamma(a,x) is the incomplete Gamma function.

    besselJ : ($,$) -> $
      ++ besselJ(v,z) is the Bessel function of the first kind.

    besselY : ($,$) -> $
      ++ besselY(v,z) is the Bessel function of the second kind.

    besselI : ($,$) -> $
      ++ besselI(v,z) is the modified Bessel function of the first kind.

    besselK : ($,$) -> $
      ++ besselK(v,z) is the modified Bessel function of the second kind.

    airyAi : $ -> $
      ++ airyAi(x) is the Airy function \spad{Ai(x)}.

    airyBi : $ -> $
      ++ airyBi(x) is the Airy function \spad{Bi(x)}.