This file is indexed.

/usr/share/axiom-20170501/src/algebra/SPLNODE.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
)abbrev domain SPLNODE SplittingNode
++ Author: Marc Moereno Maza
++ Date Created: 07/05/1996
++ Date Last Updated:  07/19/1996
++ Description: 
++ This domain exports a modest implementation for the
++ vertices of splitting trees. These vertices are called
++ here splitting nodes. Every of these nodes store 3 informations. 
++ The first one is its value, that is the current expression 
++ to evaluate. The second one is its condition, that is the 
++ hypothesis under which the value has to be evaluated. 
++ The last one is its status, that is a boolean flag
++ which is true iff the value is the result of its
++ evaluation under its condition. Two splitting vertices
++ are equal iff they have the sane values and the same
++ conditions (so their status do not matter).

SplittingNode(V,C) : SIG == CODE where
  V : Join(SetCategory,Aggregate)
  C : Join(SetCategory,Aggregate)

  Z ==> Integer
  B ==> Boolean
  O ==> OutputForm
  VT ==> Record(val:V, tower:C)
  VTB ==> Record(val:V, tower:C, flag:B)

  SIG ==> SetCategory with

     empty : () -> %
       ++ \axiom{empty()} returns the same as 
       ++ \axiom{[empty()$V,empty()$C,false]$%}

     empty? : % -> B
       ++ \axiom{empty?(n)} returns true iff the node n is \axiom{empty()$%}.

     value : % -> V
       ++ \axiom{value(n)} returns the value of the node n.

     condition : % -> C
       ++ \axiom{condition(n)} returns the condition of the node n.

     status : % -> B
       ++ \axiom{status(n)} returns the status of the node n.

     construct : (V,C,B) -> %
       ++ \axiom{construct(v,t,b)} returns the non-empty node with
       ++ value v, condition t and flag b

     construct : (V,C) -> %
       ++ \axiom{construct(v,t)} returns the same as
       ++ \axiom{construct(v,t,false)}

     construct : VT -> %
       ++ \axiom{construct(vt)} returns the same as
       ++ \axiom{construct(vt.val,vt.tower)}

     construct : List VT ->  List %
       ++ \axiom{construct(lvt)} returns the same as
       ++ \axiom{[construct(vt.val,vt.tower) for vt in lvt]}

     construct : (V, List C) -> List %
       ++ \axiom{construct(v,lt)} returns the same as
       ++ \axiom{[construct(v,t) for t in lt]}

     copy : % -> %
       ++ \axiom{copy(n)} returns a copy of n.

     setValue! : (%,V) -> %
       ++ \axiom{setValue!(n,v)} returns n whose value
       ++ has been replaced by v if it is not 
       ++ empty, else an error is produced.

     setCondition! : (%,C) -> %
       ++ \axiom{setCondition!(n,t)} returns n whose condition
       ++ has been replaced by t if it is not 
       ++ empty, else an error is produced.

     setStatus!: (%,B) -> %
       ++ \axiom{setStatus!(n,b)} returns n whose status
       ++ has been replaced by b if it is not 
       ++ empty, else an error is produced.

     setEmpty! : % -> %
       ++ \axiom{setEmpty!(n)} replaces n by \axiom{empty()$%}.

     infLex? : (%,%,(V,V) -> B,(C,C) -> B) -> B
       ++ \axiom{infLex?(n1,n2,o1,o2)} returns true iff
       ++ \axiom{o1(value(n1),value(n2))} or
       ++ \axiom{value(n1) = value(n2)} and
       ++ \axiom{o2(condition(n1),condition(n2))}.

     subNode? : (%,%,(C,C) -> B) -> B
       ++ \axiom{subNode?(n1,n2,o2)} returns true iff
       ++ \axiom{value(n1) = value(n2)} and
       ++ \axiom{o2(condition(n1),condition(n2))}

  CODE ==> add

     Rep ==> VTB

     rep(n:%):Rep == n pretend Rep

     per(r:Rep):% == r pretend %

     empty() == per [empty()$V,empty()$C,false]$Rep

     empty?(n:%) == empty?((rep n).val)$V and  empty?((rep n).tower)$C

     value(n:%) == (rep n).val

     condition(n:%) == (rep n).tower

     status(n:%) == (rep n).flag

     construct(v:V,t:C,b:B) ==  per [v,t,b]$Rep

     construct(v:V,t:C) == [v,t,false]$%

     construct(vt:VT) == [vt.val,vt.tower]$%

     construct(lvt:List VT) == [[vt]$% for vt in lvt]

     construct(v:V,lt: List C) == [[v,t]$% for t in lt]

     copy(n:%) == per copy rep n

     setValue!(n:%,v:V) == 
        (rep n).val := v
        n

     setCondition!(n:%,t:C) ==
        (rep n).tower := t
        n

     setStatus!(n:%,b:B) ==
        (rep n).flag := b
        n

     setEmpty!(n:%) ==
        (rep n).val := empty()$V
        (rep n).tower := empty()$C
        n

     infLex?(n1,n2,o1,o2) ==
        o1((rep n1).val,(rep n2).val) => true
        (rep n1).val = (rep n2).val => 
           o2((rep n1).tower,(rep n2).tower)
        false

     subNode?(n1,n2,o2) ==
        (rep n1).val = (rep n2).val => 
           o2((rep n1).tower,(rep n2).tower)
        false

     n1:% = n2:% ==
        (rep n1).val ~= (rep n2).val => false
        (rep n1).tower = (rep n2).tower

     n1:% ~= n2:% ==
        (rep n1).val = (rep n2).val => false
        (rep n1).tower ~= (rep n2).tower

     coerce(n:%):O ==
        l1,l2,l3,l : List O
        l1 := [message("value == "), ((rep n).val)::O]
        o1 : O := blankSeparate l1
        l2 := [message(" tower == "), ((rep n).tower)::O]
        o2 : O := blankSeparate l2
        if ((rep n).flag)
          then
            o3 := message(" closed == true")
          else 
            o3 := message(" closed == false")
        l := [o1,o2,o3]
        bracket commaSeparate l