/usr/share/axiom-20170501/src/algebra/SPLTREE.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | )abbrev domain SPLTREE SplittingTree
++ Author: Marc Moereno Maza
++ Date Created: 07/05/1996
++ Date Last Updated: 07/19/1996
++ References:
++ M. MORENO MAZA "Calculs de pgcd au-dessus des tours
++ d'extensions simples et resolution des systemes d'equations
++ algebriques" These, Universite P.etM. Curie, Paris, 1997.
++ Description:
++ This domain exports a modest implementation of splitting
++ trees. Spliiting trees are needed when the
++ evaluation of some quantity under some hypothesis
++ requires to split the hypothesis into sub-cases.
++ For instance by adding some new hypothesis on one
++ hand and its negation on another hand. The computations
++ are terminated is a splitting tree \axiom{a} when
++ \axiom{status(value(a))} is \axiom{true}. Thus,
++ if for the splitting tree \axiom{a} the flag
++ \axiom{status(value(a))} is \axiom{true}, then
++ \axiom{status(value(d))} is \axiom{true} for any
++ subtree \axiom{d} of \axiom{a}. This property
++ of splitting trees is called the termination
++ condition. If no vertex in a splitting tree \axiom{a}
++ is equal to another, \axiom{a} is said to satisfy
++ the no-duplicates condition. The splitting
++ tree \axiom{a} will satisfy this condition
++ if nodes are added to \axiom{a} by mean of
++ \axiom{splitNodeOf!} and if \axiom{construct}
++ is only used to create the root of \axiom{a}
++ with no children.
SplittingTree(V,C) : SIG == CODE where
V : Join(SetCategory,Aggregate)
C : Join(SetCategory,Aggregate)
B ==> Boolean
O ==> OutputForm
NNI ==> NonNegativeInteger
VT ==> Record(val:V, tower:C)
VTB ==> Record(val:V, tower:C, flag:B)
S ==> SplittingNode(V,C)
A ==> Record(root:S,subTrees:List(%))
SIG ==> RecursiveAggregate(S) with
shallowlyMutable
finiteAggregate
extractSplittingLeaf : % -> Union(%,"failed")
++ \axiom{extractSplittingLeaf(a)} returns the left
++ most leaf (as a tree) whose status is false
++ if any, else "failed" is returned.
updateStatus! : % -> %
++ \axiom{updateStatus!(a)} returns a where the status
++ of the vertices are updated to satisfy
++ the "termination condition".
construct : S -> %
++ \axiom{construct(s)} creates a splitting tree
++ with value (root vertex) given by
++ \axiom{s} and no children. Thus, if the
++ status of \axiom{s} is false, \axiom{[s]}
++ represents the starting point of the
++ evaluation \axiom{value(s)} under the
++ hypothesis \axiom{condition(s)}.
construct : (V,C, List %) -> %
++ \axiom{construct(v,t,la)} creates a splitting tree
++ with value (root vertex) given by
++ \axiom{[v,t]$S} and with \axiom{la} as
++ children list.
construct : (V,C,List S) -> %
++ \axiom{construct(v,t,ls)} creates a splitting tree
++ with value (root vertex) given by
++ \axiom{[v,t]$S} and with children list given by
++ \axiom{[[s]$% for s in ls]}.
construct : (V,C,V,List C) -> %
++ \axiom{construct(v1,t,v2,lt)} creates a splitting tree
++ with value (root vertex) given by
++ \axiom{[v,t]$S} and with children list given by
++ \axiom{[[[v,t]$S]$% for s in ls]}.
conditions : % -> List C
++ \axiom{conditions(a)} returns the list of the conditions
++ of the leaves of a
result : % -> List VT
++ \axiom{result(a)} where \axiom{ls} is the leaves list of \axiom{a}
++ returns \axiom{[[value(s),condition(s)]$VT for s in ls]}
++ if the computations are terminated in \axiom{a} else
++ an error is produced.
nodeOf? : (S,%) -> B
++ \axiom{nodeOf?(s,a)} returns true iff some node of \axiom{a}
++ is equal to \axiom{s}
subNodeOf? : (S,%,(C,C) -> B) -> B
++ \axiom{subNodeOf?(s,a,sub?)} returns true iff for some node
++ \axiom{n} in \axiom{a} we have \axiom{s = n} or
++ \axiom{status(n)} and \axiom{subNode?(s,n,sub?)}.
remove : (S,%) -> %
++ \axiom{remove(s,a)} returns the splitting tree obtained
++ from a by removing every sub-tree \axiom{b} such
++ that \axiom{value(b)} and \axiom{s} have the same
++ value, condition and status.
remove! : (S,%) -> %
++ \axiom{remove!(s,a)} replaces a by remove(s,a)
splitNodeOf! : (%,%,List(S)) -> %
++ \axiom{splitNodeOf!(l,a,ls)} returns \axiom{a} where the children
++ list of \axiom{l} has been set to
++ \axiom{[[s]$% for s in ls | not nodeOf?(s,a)]}.
++ Thus, if \axiom{l} is not a node of \axiom{a}, this
++ latter splitting tree is unchanged.
splitNodeOf! : (%,%,List(S),(C,C) -> B) -> %
++ \axiom{splitNodeOf!(l,a,ls,sub?)} returns \axiom{a} where the
++ children list of \axiom{l} has been set to
++ \axiom{[[s]$% for s in ls | not subNodeOf?(s,a,sub?)]}.
++ Thus, if \axiom{l} is not a node of \axiom{a}, this
++ latter splitting tree is unchanged.
CODE ==> add
Rep ==> A
rep(n:%):Rep == n pretend Rep
per(r:Rep):% == r pretend %
construct(s:S) ==
per [s,[]]$A
construct(v:V,t:C,la:List(%)) ==
per [[v,t]$S,la]$A
construct(v:V,t:C,ls:List(S)) ==
per [[v,t]$S,[[s]$% for s in ls]]$A
construct(v1:V,t:C,v2:V,lt:List(C)) ==
[v1,t,([v2,lt]$S)@(List S)]$%
empty?(a:%) == empty?((rep a).root) and empty?((rep a).subTrees)
empty() == [empty()$S]$%
remove(s:S,a:%) ==
empty? a => a
(s = value(a)) and (status(s) = status(value(a))) => empty()$%
la := children(a)
lb : List % := []
while (not empty? la) repeat
lb := cons(remove(s,first la), lb)
la := rest la
lb := reverse remove(empty?,lb)
[value(value(a)),condition(value(a)),lb]$%
remove!(s:S,a:%) ==
empty? a => a
(s = value(a)) and (status(s) = status(value(a))) =>
(rep a).root := empty()$S
(rep a).subTrees := []
a
la := children(a)
lb : List % := []
while (not empty? la) repeat
lb := cons(remove!(s,first la), lb)
la := rest la
lb := reverse remove(empty()$%,lb)
setchildren!(a,lb)
value(a:%) ==
(rep a).root
children(a:%) ==
(rep a).subTrees
leaf?(a:%) ==
empty? a => false
empty? (rep a).subTrees
setchildren!(a:%,la:List(%)) ==
(rep a).subTrees := la
a
setvalue!(a:%,s:S) ==
(rep a).root := s
s
cyclic?(a:%) == false
map(foo:(S -> S),a:%) ==
empty? a => a
b : % := [foo(value(a))]$%
leaf? a => b
setchildren!(b,[map(foo,c) for c in children(a)])
map!(foo:(S -> S),a:%) ==
empty? a => a
setvalue!(a,foo(value(a)))
leaf? a => a
setchildren!(a,[map!(foo,c) for c in children(a)])
copy(a:%) ==
map(copy,a)
eq?(a1:%,a2:%) ==
error"in eq? from SPLTREE : la vache qui rit est-elle folle?"
nodes(a:%) ==
empty? a => []
leaf? a => [a]
cons(a,concat([nodes(c) for c in children(a)]))
leaves(a:%) ==
empty? a => []
leaf? a => [value(a)]
concat([leaves(c) for c in children(a)])
members(a:%) ==
empty? a => []
leaf? a => [value(a)]
cons(value(a),concat([members(c) for c in children(a)]))
#(a:%) ==
empty? a => 0$NNI
leaf? a => 1$NNI
reduce("+",[#c for c in children(a)],1$NNI)$(List NNI)
a1:% = a2:% ==
empty? a1 => empty? a2
empty? a2 => false
leaf? a1 =>
not leaf? a2 => false
value(a1) =$S value(a2)
leaf? a2 => false
value(a1) ~=$S value(a2) => false
children(a1) = children(a2)
localCoerce(a:%,k:NNI):O ==
s : String
if k = 1 then s := "* " else s := "-> "
for i in 2..k repeat s := concat("-+",s)$String
ro : O := left(hconcat(message(s)$O,value(a)::O)$O)$O
leaf? a => ro
lo : List O := [localCoerce(c,k+1) for c in children(a)]
lo := cons(ro,lo)
vconcat(lo)$O
coerce(a:%):O ==
empty? a => vconcat(message(" ")$O,message("* []")$O)
vconcat(message(" ")$O,localCoerce(a,1))
extractSplittingLeaf(a:%) ==
empty? a => "failed"::Union(%,"failed")
status(value(a))$S => "failed"::Union(%,"failed")
la := children(a)
empty? la => a
while (not empty? la) repeat
esl := extractSplittingLeaf(first la)
(esl case %) => return(esl)
la := rest la
"failed"::Union(%,"failed")
updateStatus!(a:%) ==
la := children(a)
(empty? la) or (status(value(a))$S) => a
done := true
while (not empty? la) and done repeat
done := done and status(value(updateStatus! first la))
la := rest la
setStatus!(value(a),done)$S
a
result(a:%) ==
empty? a => []
not status(value(a))$S =>
error"in result from SLPTREE : mad cow!"
ls : List S := leaves(a)
[[value(s),condition(s)]$VT for s in ls]
conditions(a:%) ==
empty? a => []
ls : List S := leaves(a)
[condition(s) for s in ls]
nodeOf?(s:S,a:%) ==
empty? a => false
s =$S value(a) => true
la := children(a)
while (not empty? la) and (not nodeOf?(s,first la)) repeat
la := rest la
not empty? la
subNodeOf?(s:S,a:%,sub?:((C,C) -> B)) ==
empty? a => false
-- s =$S value(a) => true
status(value(a)$%)$S and subNode?(s,value(a),sub?)$S => true
la := children(a)
while (not empty? la) and (not subNodeOf?(s,first la,sub?)) repeat
la := rest la
not empty? la
splitNodeOf!(l:%,a:%,ls:List(S)) ==
ln := removeDuplicates ls
la : List % := []
while not empty? ln repeat
if not nodeOf?(first ln,a)
then
la := cons([first ln]$%, la)
ln := rest ln
la := reverse la
setchildren!(l,la)$%
if empty? la then (rep l).root := [empty()$V,empty()$C,true]$S
updateStatus!(a)
splitNodeOf!(l:%,a:%,ls:List(S),sub?:((C,C) -> B)) ==
ln := removeDuplicates ls
la : List % := []
while not empty? ln repeat
if not subNodeOf?(first ln,a,sub?)
then
la := cons([first ln]$%, la)
ln := rest ln
la := reverse la
setchildren!(l,la)$%
if empty? la then (rep l).root := [empty()$V,empty()$C,true]$S
updateStatus!(a)
|