/usr/share/axiom-20170501/src/algebra/STREAM.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | )abbrev domain STREAM Stream
++ Implementation of streams via lazy evaluation
++ Authors: Burge, Watt; updated by Clifton J. Williamson
++ Date Created: July 1986
++ Date Last Updated: 30 March 1990
++ Description:
++ A stream is an implementation of an infinite sequence using
++ a list of terms that have been computed and a function closure
++ to compute additional terms when needed.
Stream(S) : SIG == CODE where
S : Type
B ==> Boolean
OUT ==> OutputForm
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
U ==> UniversalSegment I
SIG ==> LazyStreamAggregate(S) with
shallowlyMutable
++ one may destructively alter a stream by assigning new
++ values to its entries.
coerce : L S -> %
++ coerce(l) converts a list l to a stream.
++
++X m:=[1,2,3,4,5,6,7,8,9,10,11,12]
++X coerce(m)@Stream(Integer)
++X m::Stream(Integer)
repeating : L S -> %
++ repeating(l) is a repeating stream whose period is the list l.
++
++X m:=repeating([-1,0,1,2,3])
if S has SetCategory then
repeating? : (L S,%) -> B
++ repeating?(l,s) returns true if a stream s is periodic
++ with period l, and false otherwise.
++
++X m:=[1,2,3]
++X n:=repeating(m)
++X repeating?(m,n)
findCycle : (NNI,%) -> Record(cycle?: B, prefix: NNI, period: NNI)
++ findCycle(n,st) determines if st is periodic within n.
++
++X m:=[1,2,3]
++X n:=repeating(m)
++X findCycle(3,n)
++X findCycle(2,n)
delay : (() -> %) -> %
++ delay(f) creates a stream with a lazy evaluation defined by
++ function f.
++ Caution: This function can only be called in compiled code.
cons : (S,%) -> %
++ cons(a,s) returns a stream whose \spad{first} is \spad{a}
++ and whose \spad{rest} is s.
++ Note: \spad{cons(a,s) = concat(a,s)}.
++
++X m:=[1,2,3]
++X n:=repeating(m)
++X cons(4,n)
if S has SetCategory then
output : (I, %) -> Void
++ output(n,st) computes and displays the first n entries
++ of st.
++
++X m:=[1,2,3]
++X n:=repeating(m)
++X output(5,n)
showAllElements : % -> OUT
++ showAllElements(s) creates an output form which displays all
++ computed elements.
++
++X m:=[1,2,3,4,5,6,7,8,9,10,11,12]
++X n:=m::Stream(PositiveInteger)
++X showAllElements n
showAll? : () -> B
++ showAll?() returns true if all computed entries of streams
++ will be displayed.
--!! this should be a function of one argument
setrest_! : (%,I,%) -> %
++ setrest!(x,n,y) sets rest(x,n) to y. The function will expand
++ cycles if necessary.
++
++X p:=[i for i in 1..]
++X q:=[i for i in 9..]
++X setrest!(p,4,q)
++X p
generate : (() -> S) -> %
++ generate(f) creates an infinite stream all of whose elements are
++ equal to \spad{f()}.
++ Note: \spad{generate(f) = [f(),f(),f(),...]}.
++
++X f():Integer == 1
++X generate(f)
generate : (S -> S,S) -> %
++ generate(f,x) creates an infinite stream whose first element is
++ x and whose nth element (\spad{n > 1}) is f applied to the previous
++ element. Note: \spad{generate(f,x) = [x,f(x),f(f(x)),...]}.
++
++X f(x:Integer):Integer == x+10
++X generate(f,10)
filterWhile : (S -> Boolean,%) -> %
++ filterWhile(p,s) returns \spad{[x0,x1,...,x(n-1)]} where
++ \spad{s = [x0,x1,x2,..]} and
++ n is the smallest index such that \spad{p(xn) = false}.
++
++X m:=[i for i in 1..]
++X f(x:PositiveInteger):Boolean == x < 5
++X filterWhile(f,m)
filterUntil : (S -> Boolean,%) -> %
++ filterUntil(p,s) returns \spad{[x0,x1,...,x(n)]} where
++ \spad{s = [x0,x1,x2,..]} and
++ n is the smallest index such that \spad{p(xn) = true}.
++
++X m:=[i for i in 1..]
++X f(x:PositiveInteger):Boolean == x < 5
++X filterUntil(f,m)
CODE ==> add
MIN ==> 1 -- minimal stream index; see also the defaults in LZSTAGG
x:%
import CyclicStreamTools(S,%)
--% representation
-- This description of the rep is not quite true.
-- The Rep is a pair of one of three forms:
-- [value: S, rest: %]
-- [nullstream: Magic, NIL ]
-- [nonnullstream: Magic, fun: () -> %]
-- Could use a record of unions if we could guarantee no tags.
NullStream: S := _$NullStream$Lisp pretend S
NonNullStream: S := _$NonNullStream$Lisp pretend S
Rep := Record(firstElt: S, restOfStream: %)
explicitlyEmpty? x == EQ(frst x,NullStream)$Lisp
lazy? x == EQ(frst x,NonNullStream)$Lisp
--% signatures of local functions
setfrst_! : (%,S) -> S
setrst_! : (%,%) -> %
setToNil_! : % -> %
setrestt_! : (%,I,%) -> %
lazyEval : % -> %
expand_! : (%,I) -> %
--% functions to access or change record fields without lazy evaluation
frst x == x.firstElt
rst x == x.restOfStream
setfrst_!(x,s) == x.firstElt := s
setrst_!(x,y) == x.restOfStream := y
setToNil_! x ==
-- destructively changes x to a null stream
setfrst_!(x,NullStream); setrst_!(x,NIL$Lisp)
x
--% SETCAT functions
if S has SetCategory then
getm : (%,L OUT,I) -> L OUT
streamCountCoerce : % -> OUT
listm : (%,L OUT,I) -> L OUT
getm(x,le,n) ==
explicitlyEmpty? x => le
lazy? x =>
n > 0 =>
empty? x => le
getm(rst x,concat(frst(x) :: OUT,le),n - 1)
concat(message("..."),le)
eq?(x,rst x) => concat(overbar(frst(x) :: OUT),le)
n > 0 => getm(rst x,concat(frst(x) :: OUT,le),n - 1)
concat(message("..."),le)
streamCountCoerce x ==
-- this will not necessarily display all stream elements
-- which have been computed
count := _$streamCount$Lisp
-- compute count elements
y := x
for i in 1..count while not empty? y repeat y := rst y
fc := findCycle(count,x)
not fc.cycle? => bracket reverse_! getm(x,empty(),count)
le : L OUT := empty()
for i in 1..fc.prefix repeat
le := concat(first(x) :: OUT,le)
x := rest x
pp : OUT :=
fc.period = 1 => overbar(frst(x) :: OUT)
pl : L OUT := empty()
for i in 1..fc.period repeat
pl := concat(frst(x) :: OUT,pl)
x := rest x
overbar commaSeparate reverse_! pl
bracket reverse_! concat(pp,le)
listm(x,le,n) ==
explicitlyEmpty? x => le
lazy? x =>
n > 0 =>
empty? x => le
listm(rst x, concat(frst(x) :: OUT,le),n-1)
concat(message("..."),le)
listm(rst x,concat(frst(x) :: OUT,le),n-1)
showAllElements x ==
-- this will display all stream elements which have been computed
-- and will display at least n elements with n = streamCount$Lisp
extend(x,_$streamCount$Lisp)
cycElt := cycleElt x
cycElt case "failed" =>
le := listm(x,empty(),_$streamCount$Lisp)
bracket reverse_! le
cycEnt := computeCycleEntry(x,cycElt :: %)
le : L OUT := empty()
while not eq?(x,cycEnt) repeat
le := concat(frst(x) :: OUT,le)
x := rst x
len := computeCycleLength(cycElt :: %)
pp : OUT :=
len = 1 => overbar(frst(x) :: OUT)
pl : L OUT := []
for i in 1..len repeat
pl := concat(frst(x) :: OUT,pl)
x := rst x
overbar commaSeparate reverse_! pl
bracket reverse_! concat(pp,le)
showAll?() ==
NULL(_$streamsShowAll$Lisp)$Lisp => false
true
coerce(x):OUT ==
showAll?() => showAllElements x
streamCountCoerce x
--% AGG functions
lazyCopy:% -> %
lazyCopy x == delay
empty? x => empty()
concat(frst x, copy rst x)
copy x ==
cycElt := cycleElt x
cycElt case "failed" => lazyCopy x
ce := cycElt :: %
len := computeCycleLength(ce)
e := computeCycleEntry(x,ce)
d := distance(x,e)
cycle := complete first(e,len)
setrst_!(tail cycle,cycle)
d = 0 => cycle
head := complete first(x,d::NNI)
setrst_!(tail head,cycle)
head
--% CNAGG functions
construct l ==
-- copied from defaults to avoid loading defaults
empty? l => empty()
concat(first l, construct rest l)
--% ELTAGG functions
elt(x:%,n:I) ==
-- copied from defaults to avoid loading defaults
n < MIN or empty? x => error "elt: no such element"
n = MIN => frst x
elt(rst x,n - 1)
seteltt:(%,I,S) -> S
seteltt(x,n,s) ==
n = MIN => setfrst_!(x,s)
seteltt(rst x,n - 1,s)
setelt(x,n:I,s:S) ==
n < MIN or empty? x => error "setelt: no such element"
x := expand_!(x,n - MIN + 1)
seteltt(x,n,s)
--% IXAGG functions
removee: ((S -> Boolean),%) -> %
removee(p,x) == delay
empty? x => empty()
p(frst x) => remove(p,rst x)
concat(frst x,remove(p,rst x))
remove(p,x) ==
explicitlyEmpty? x => empty()
eq?(x,rst x) =>
p(frst x) => empty()
x
removee(p,x)
selectt: ((S -> Boolean),%) -> %
selectt(p,x) == delay
empty? x => empty()
not p(frst x) => select(p, rst x)
concat(frst x,select(p,rst x))
select(p,x) ==
explicitlyEmpty? x => empty()
eq?(x,rst x) =>
p(frst x) => x
empty()
selectt(p,x)
map(f,x) ==
map(f,x pretend Stream(S))$StreamFunctions2(S,S) pretend %
map(g,x,y) ==
xs := x pretend Stream(S); ys := y pretend Stream(S)
map(g,xs,ys)$StreamFunctions3(S,S,S) pretend %
fill_!(x,s) ==
setfrst_!(x,s)
setrst_!(x,x)
map_!(f,x) ==
-- too many problems with map_! on a lazy stream, so
-- in this case, an error message is returned
cyclic? x =>
tail := cycleTail x ; y := x
until y = tail repeat
setfrst_!(y,f frst y)
y := rst y
x
explicitlyFinite? x =>
y := x
while not empty? y repeat
setfrst_!(y,f frst y)
y := rst y
x
error "map!: stream with lazy evaluation"
swap_!(x,m,n) ==
(not index?(m,x)) or (not index?(n,x)) =>
error "swap!: no such elements"
x := expand_!(x,max(m,n) - MIN + 1)
xm := elt(x,m); xn := elt(x,n)
setelt(x,m,xn); setelt(x,n,xm)
x
--% LNAGG functions
concat(x:%,s:S) == delay
empty? x => concat(s,empty())
concat(frst x,concat(rst x,s))
concat(x:%,y:%) == delay
empty? x => copy y
concat(frst x,concat(rst x, y))
concat l == delay
empty? l => empty()
empty?(x := first l) => concat rest l
concat(frst x,concat(rst x,concat rest l))
setelt(x,seg:U,s:S) ==
low := lo seg
hasHi seg =>
high := hi seg
high < low => s
(not index?(low,x)) or (not index?(high,x)) =>
error "setelt: index out of range"
x := expand_!(x,high - MIN + 1)
y := rest(x,(low - MIN) :: NNI)
for i in 0..(high-low) repeat
setfrst_!(y,s)
y := rst y
s
not index?(low,x) => error "setelt: index out of range"
x := rest(x,(low - MIN) :: NNI)
setrst_!(x,x)
setfrst_!(x,s)
--% RCAGG functions
empty() == [NullStream, NIL$Lisp]
lazyEval x == (rst(x):(()-> %)) ()
lazyEvaluate x ==
st := lazyEval x
setfrst_!(x, frst st)
setrst_!(x,if EQ(rst st,st)$Lisp then x else rst st)
x
-- empty? is the only function that explicitly causes evaluation
-- of a stream element
empty? x ==
while lazy? x repeat
st := lazyEval x
setfrst_!(x, frst st)
setrst_!(x,if EQ(rst st,st)$Lisp then x else rst st)
explicitlyEmpty? x
--% URAGG functions
first(x,n) == delay
-- former name: take
n = 0 or empty? x => empty()
(concat(frst x, first(rst x,(n-1) :: NNI)))
concat(s:S,x:%) == [s,x]
cons(s,x) == concat(s,x)
cycleSplit_! x ==
cycElt := cycleElt x
cycElt case "failed" =>
error "cycleSplit_!: non-cyclic stream"
y := computeCycleEntry(x,cycElt :: %)
eq?(x,y) => (setToNil_! x; return y)
z := rst x
repeat
eq?(y,z) => (setrest_!(x,empty()); return y)
x := z ; z := rst z
expand_!(x,n) ==
-- expands cycles (if necessary) so that the first n
-- elements of x will not be part of a cycle
n < 1 => x
y := x
for i in 1..n while not empty? y repeat y := rst y
cycElt := cycleElt x
cycElt case "failed" => x
e := computeCycleEntry(x,cycElt :: %)
d : I := distance(x,e)
d >= n => x
if d = 0 then
-- roll the cycle 1 entry
d := 1
t := cycleTail e
if eq?(t,e) then
t := concat(frst t,empty())
e := setrst_!(t,t)
setrst_!(x,e)
else
setrst_!(t,concat(frst e,rst e))
e := rst e
nLessD := (n-d) :: NNI
y := complete first(e,nLessD)
e := rest(e,nLessD)
setrst_!(tail y,e)
setrst_!(rest(x,(d-1) :: NNI),y)
x
first x ==
empty? x => error "Can't take the first of an empty stream."
frst x
concat_!(x:%,y:%) ==
empty? x => y
setrst_!(tail x,y)
concat_!(x:%,s:S) ==
concat_!(x,concat(s,empty()))
setfirst_!(x,s) == setelt(x,0,s)
setelt(x,"first",s) == setfirst_!(x,s)
setrest_!(x,y) ==
empty? x => error "setrest!: empty stream"
setrst_!(x,y)
setelt(x,"rest",y) == setrest_!(x,y)
setlast_!(x,s) ==
empty? x => error "setlast!: empty stream"
setfrst_!(tail x, s)
setelt(x,"last",s) == setlast_!(x,s)
split_!(x,n) ==
n < MIN => error "split!: index out of range"
n = MIN =>
y : % := empty()
setfrst_!(y,frst x)
setrst_!(y,rst x)
setToNil_! x
y
x := expand_!(x,n - MIN)
x := rest(x,(n - MIN - 1) :: NNI)
y := rest x
setrst_!(x,empty())
y
--% STREAM functions
coerce(l: L S) == construct l
repeating l ==
empty? l =>
error "Need a non-null list to make a repeating stream."
x0 : % := x := construct l
while not empty? rst x repeat x := rst x
setrst_!(x,x0)
if S has SetCategory then
repeating?(l, x) ==
empty? l =>
error "Need a non-empty? list to make a repeating stream."
empty? rest l =>
not empty? x and frst x = first l and x = rst x
x0 := x
for s in l repeat
empty? x or s ^= frst x => return false
x := rst x
eq?(x,x0)
findCycle(n, x) ==
hd := x
-- Determine whether periodic within n.
tl := rest(x, n)
explicitlyEmpty? tl => [false, 0, 0]
i := 0; while not eq?(x,tl) repeat (x := rst x; i := i + 1)
i = n => [false, 0, 0]
-- Find period. Now x=tl, so step over and find it again.
x := rst x; per := 1
while not eq?(x,tl) repeat (x := rst x; per := per + 1)
-- Find non-periodic part.
x := hd; xp := rest(hd, per); npp := 0
while not eq?(x,xp) repeat (x := rst x; xp := rst xp; npp := npp+1)
[true, npp, per]
delay(fs:()->%) == [NonNullStream, fs pretend %]
explicitEntries? x ==
not explicitlyEmpty? x and not lazy? x
numberOfComputedEntries x ==
explicitEntries? x => numberOfComputedEntries(rst x) + 1
0
if S has SetCategory then
output(n,x) ==
(not(n>0))or empty? x => void()
mathPrint(frst(x)::OUT)$Lisp
output(n-1, rst x)
setrestt_!(x,n,y) ==
n = 0 => setrst_!(x,y)
setrestt_!(rst x,n-1,y)
setrest_!(x,n,y) ==
n < 0 or empty? x => error "setrest!: no such rest"
x := expand_!(x,n+1)
setrestt_!(x,n,y)
generate f == delay concat(f(), generate f)
gen:(S -> S,S) -> %
gen(f,s) == delay(ss:=f s; concat(ss, gen(f,ss)))
generate(f,s)==concat(s,gen(f,s))
concat(x:%,y:%) ==delay
empty? x => y
concat(frst x,concat(rst x,y))
swhilee:(S -> Boolean,%) -> %
swhilee(p,x) == delay
empty? x => empty()
not p(frst x) => empty()
concat(frst x,filterWhile(p,rst x))
filterWhile(p,x)==
explicitlyEmpty? x => empty()
eq?(x,rst x) =>
p(frst x) => x
empty()
swhilee(p,x)
suntill: (S -> Boolean,%) -> %
suntill(p,x) == delay
empty? x => empty()
p(frst x) => concat(frst x,empty())
concat(frst x, filterUntil(p, rst x))
filterUntil(p,x)==
explicitlyEmpty? x => empty()
eq?(x,rst x) =>
p(frst x) => concat(frst x,empty())
x
suntill(p,x)
|