/usr/share/axiom-20170501/src/algebra/STTF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | )abbrev package STTF StreamTranscendentalFunctions
++ Author: William Burge, Clifton J. Williamson
++ Date Created: 1986
++ Date Last Updated: 6 March 1995
++ Description:
++ StreamTranscendentalFunctions implements transcendental functions on
++ Taylor series, where a Taylor series is represented by a stream of
++ its coefficients.
StreamTranscendentalFunctions(Coef) : SIG == CODE where
Coef : Algebra Fraction Integer
L ==> List
I ==> Integer
RN ==> Fraction Integer
SG ==> String
ST ==> Stream Coef
STT ==> StreamTaylorSeriesOperations Coef
YS ==> Y$ParadoxicalCombinatorsForStreams(Coef)
SIG ==> with
exp : ST -> ST
++ exp(st) computes the exponential of a power series st.
log : ST -> ST
++ log(st) computes the log of a power series.
"**" : (ST,ST) -> ST
++ st1 ** st2 computes the power of a power series st1 by another
++ power series st2.
sincos : ST -> Record(sin:ST, cos:ST)
++ sincos(st) returns a record containing the sine and cosine
++ of a power series st.
sin : ST -> ST
++ sin(st) computes sine of a power series st.
cos : ST -> ST
++ cos(st) computes cosine of a power series st.
tan : ST -> ST
++ tan(st) computes tangent of a power series st.
cot : ST -> ST
++ cot(st) computes cotangent of a power series st.
sec : ST -> ST
++ sec(st) computes secant of a power series st.
csc : ST -> ST
++ csc(st) computes cosecant of a power series st.
asin : ST -> ST
++ asin(st) computes arcsine of a power series st.
acos : ST -> ST
++ acos(st) computes arccosine of a power series st.
atan : ST -> ST
++ atan(st) computes arctangent of a power series st.
acot : ST -> ST
++ acot(st) computes arccotangent of a power series st.
asec : ST -> ST
++ asec(st) computes arcsecant of a power series st.
acsc : ST -> ST
++ acsc(st) computes arccosecant of a power series st.
sinhcosh: ST -> Record(sinh:ST, cosh:ST)
++ sinhcosh(st) returns a record containing
++ the hyperbolic sine and cosine
++ of a power series st.
sinh : ST -> ST
++ sinh(st) computes the hyperbolic sine of a power series st.
cosh : ST -> ST
++ cosh(st) computes the hyperbolic cosine of a power series st.
tanh : ST -> ST
++ tanh(st) computes the hyperbolic tangent of a power series st.
coth : ST -> ST
++ coth(st) computes the hyperbolic cotangent of a power series st.
sech : ST -> ST
++ sech(st) computes the hyperbolic secant of a power series st.
csch : ST -> ST
++ csch(st) computes the hyperbolic cosecant of a power series st.
asinh : ST -> ST
++ asinh(st) computes the inverse hyperbolic sine of a power series st.
acosh : ST -> ST
++ acosh(st) computes the inverse hyperbolic cosine
++ of a power series st.
atanh : ST -> ST
++ atanh(st) computes the inverse hyperbolic tangent
++ of a power series st.
acoth : ST -> ST
++ acoth(st) computes the inverse hyperbolic
++ cotangent of a power series st.
asech : ST -> ST
++ asech(st) computes the inverse hyperbolic secant of a
++ power series st.
acsch : ST -> ST
++ acsch(st) computes the inverse hyperbolic
++ cosecant of a power series st.
CODE ==> add
import StreamTaylorSeriesOperations Coef
TRANSFCN : Boolean := Coef has TranscendentalFunctionCategory
--% Error Reporting
TRCONST : SG := "series expansion involves transcendental constants"
NPOWERS : SG := "series expansion has terms of negative degree"
FPOWERS : SG := "series expansion has terms of fractional degree"
MAYFPOW : SG := "series expansion may have terms of fractional degree"
LOGS : SG := "series expansion has logarithmic term"
NPOWLOG : SG :=
"series expansion has terms of negative degree or logarithmic term"
FPOWLOG : SG :=
"series expansion has terms of fractional degree or logarithmic term"
NOTINV : SG := "leading coefficient not invertible"
--% Exponentials and Logarithms
expre:(Coef,ST,ST) -> ST
expre(r,e,dx) == lazyIntegrate(r,e*dx)
exp z ==
empty? z => 1 :: ST
(coef := frst z) = 0 => YS(y +-> expre(1,y,deriv z))
TRANSFCN => YS(y +-> expre(exp coef,y,deriv z))
error concat("exp: ",TRCONST)
log z ==
empty? z => error "log: constant coefficient should not be 0"
(coef := frst z) = 0 => error "log: constant coefficient should not be 0"
coef = 1 => lazyIntegrate(0,deriv z/z)
TRANSFCN => lazyIntegrate(log coef,deriv z/z)
error concat("log: ",TRCONST)
z1:ST ** z2:ST == exp(z2 * log z1)
--% Trigonometric Functions
sincosre:(Coef,Coef,L ST,ST,Coef) -> L ST
sincosre(rs,rc,sc,dx,sign) ==
[lazyIntegrate(rs,(second sc)*dx),lazyIntegrate(rc,sign*(first sc)*dx)]
sincos z ==
empty? z => [0 :: ST,1 :: ST]
l :=
(coef := frst z) = 0 => YS(y +-> sincosre(0,1,y,deriv z,-1),2)
TRANSFCN => YS(y +-> sincosre(sin coef,cos coef,y,deriv z,-1),2)
error concat("sincos: ",TRCONST)
[first l,second l]
sin z == sincos(z).sin
cos z == sincos(z).cos
tanre:(Coef,ST,ST,Coef) -> ST
tanre(r,t,dx,sign) == lazyIntegrate(r,((1 :: ST) + sign*t*t)*dx)
tan z ==
empty? z => 0 :: ST
(coef := frst z) = 0 => YS(y +-> tanre(0,y,deriv z,1))
TRANSFCN => YS(y +-> tanre(tan coef,y,deriv z,1))
error concat("tan: ",TRCONST)
cotre:(Coef,ST,ST) -> ST
cotre(r,t,dx) == lazyIntegrate(r,-((1 :: ST) + t*t)*dx)
cot z ==
empty? z => error "cot: cot(0) is undefined"
(coef := frst z) = 0 => error concat("cot: ",NPOWERS)
TRANSFCN => YS(y +-> cotre(cot coef,y,deriv z))
error concat("cot: ",TRCONST)
sec z ==
empty? z => 1 :: ST
frst z = 0 => recip(cos z) :: ST
TRANSFCN =>
cosz := cos z
first cosz = 0 => error concat("sec: ",NPOWERS)
recip(cosz) :: ST
error concat("sec: ",TRCONST)
csc z ==
empty? z => error "csc: csc(0) is undefined"
TRANSFCN =>
sinz := sin z
first sinz = 0 => error concat("csc: ",NPOWERS)
recip(sinz) :: ST
error concat("csc: ",TRCONST)
orderOrFailed : ST -> Union(I,"failed")
orderOrFailed x ==
-- returns the order of x or "failed"
-- if -1 is returned, the series is identically zero
for n in 0..1000 repeat
empty? x => return -1
not zero? frst x => return n :: I
x := rst x
"failed"
asin z ==
empty? z => 0 :: ST
(coef := frst z) = 0 =>
integrate(0,powern(-1/2,(1 :: ST) - z*z) * (deriv z))
TRANSFCN =>
coef = 1 or coef = -1 =>
x := (1 :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asin: ",MAYFPOW)
(order := ord :: I) = -1 => return asin(coef) :: ST
odd? order => error concat("asin: ",FPOWERS)
squirt := powern(1/2,x)
(quot := (deriv z) exquo squirt) case "failed" =>
error concat("asin: ",NOTINV)
integrate(asin coef,quot :: ST)
integrate(asin coef,powern(-1/2,(1 :: ST) - z*z) * (deriv z))
error concat("asin: ",TRCONST)
acos z ==
empty? z =>
TRANSFCN => acos(0)$Coef :: ST
error concat("acos: ",TRCONST)
TRANSFCN =>
coef := frst z
coef = 1 or coef = -1 =>
x := (1 :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acos: ",MAYFPOW)
(order := ord :: I) = -1 => return acos(coef) :: ST
odd? order => error concat("acos: ",FPOWERS)
squirt := powern(1/2,x)
(quot := (-deriv z) exquo squirt) case "failed" =>
error concat("acos: ",NOTINV)
integrate(acos coef,quot :: ST)
integrate(acos coef,-powern(-1/2,(1 :: ST) - z*z) * (deriv z))
error concat("acos: ",TRCONST)
atan z ==
empty? z => 0 :: ST
(coef := frst z) = 0 =>
integrate(0,(recip((1 :: ST) + z*z) :: ST) * (deriv z))
TRANSFCN =>
(y := recip((1 :: ST) + z*z)) case "failed" =>
error concat("atan: ",LOGS)
integrate(atan coef,(y :: ST) * (deriv z))
error concat("atan: ",TRCONST)
acot z ==
empty? z =>
TRANSFCN => acot(0)$Coef :: ST
error concat("acot: ",TRCONST)
TRANSFCN =>
(y := recip((1 :: ST) + z*z)) case "failed" =>
error concat("acot: ",LOGS)
integrate(acot frst z,-(y :: ST) * (deriv z))
error concat("acot: ",TRCONST)
asec z ==
empty? z => error "asec: constant coefficient should not be 0"
TRANSFCN =>
(coef := frst z) = 0 =>
error "asec: constant coefficient should not be 0"
coef = 1 or coef = -1 =>
x := z*z - (1 :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asec: ",MAYFPOW)
(order := ord :: I) = -1 => return asec(coef) :: ST
odd? order => error concat("asec: ",FPOWERS)
squirt := powern(1/2,x)
(quot := (deriv z) exquo squirt) case "failed" =>
error concat("asec: ",NOTINV)
(quot2 := (quot :: ST) exquo z) case "failed" =>
error concat("asec: ",NOTINV)
integrate(asec coef,quot2 :: ST)
integrate(asec coef,(powern(-1/2,z*z-(1::ST))*(deriv z)) / z)
error concat("asec: ",TRCONST)
acsc z ==
empty? z => error "acsc: constant coefficient should not be zero"
TRANSFCN =>
(coef := frst z) = 0 =>
error "acsc: constant coefficient should not be zero"
coef = 1 or coef = -1 =>
x := z*z - (1 :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acsc: ",MAYFPOW)
(order := ord :: I) = -1 => return acsc(coef) :: ST
odd? order => error concat("acsc: ",FPOWERS)
squirt := powern(1/2,x)
(quot := (-deriv z) exquo squirt) case "failed" =>
error concat("acsc: ",NOTINV)
(quot2 := (quot :: ST) exquo z) case "failed" =>
error concat("acsc: ",NOTINV)
integrate(acsc coef,quot2 :: ST)
integrate(acsc coef,-(powern(-1/2,z*z-(1::ST))*(deriv z)) / z)
error concat("acsc: ",TRCONST)
--% Hyperbolic Trigonometric Functions
sinhcosh z ==
empty? z => [0 :: ST,1 :: ST]
l :=
(coef := frst z) = 0 => YS(y +-> sincosre(0,1,y,deriv z,1),2)
TRANSFCN => YS(y +-> sincosre(sinh coef,cosh coef,y,deriv z,1),2)
error concat("sinhcosh: ",TRCONST)
[first l,second l]
sinh z == sinhcosh(z).sinh
cosh z == sinhcosh(z).cosh
tanh z ==
empty? z => 0 :: ST
(coef := frst z) = 0 => YS(y +-> tanre(0,y,deriv z,-1))
TRANSFCN => YS(y +-> tanre(tanh coef,y,deriv z,-1))
error concat("tanh: ",TRCONST)
coth z ==
tanhz := tanh z
empty? tanhz => error "coth: coth(0) is undefined"
(frst tanhz) = 0 => error concat("coth: ",NPOWERS)
recip(tanhz) :: ST
sech z ==
coshz := cosh z
(empty? coshz) or (frst coshz = 0) => error concat("sech: ",NPOWERS)
recip(coshz) :: ST
csch z ==
sinhz := sinh z
(empty? sinhz) or (frst sinhz = 0) => error concat("csch: ",NPOWERS)
recip(sinhz) :: ST
asinh z ==
empty? z => 0 :: ST
(coef := frst z) = 0 => log(z + powern(1/2,(1 :: ST) + z*z))
TRANSFCN =>
x := (1 :: ST) + z*z
-- compute order of 'x', in case coefficient(z,0) = +- %i
(ord := orderOrFailed x) case "failed" =>
error concat("asinh: ",MAYFPOW)
(order := ord :: I) = -1 => return asinh(coef) :: ST
odd? order => error concat("asinh: ",FPOWERS)
-- the argument to 'log' must have a non-zero constant term
log(z + powern(1/2,x))
error concat("asinh: ",TRCONST)
acosh z ==
empty? z =>
TRANSFCN => acosh(0)$Coef :: ST
error concat("acosh: ",TRCONST)
TRANSFCN =>
coef := frst z
coef = 1 or coef = -1 =>
x := z*z - (1 :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acosh: ",MAYFPOW)
(order := ord :: I) = -1 => return acosh(coef) :: ST
odd? order => error concat("acosh: ",FPOWERS)
-- the argument to 'log' must have a non-zero constant term
log(z + powern(1/2,x))
log(z + powern(1/2,z*z - (1 :: ST)))
error concat("acosh: ",TRCONST)
atanh z ==
empty? z => 0 :: ST
(coef := frst z) = 0 =>
(inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z))
TRANSFCN =>
coef = 1 or coef = -1 => error concat("atanh: ",LOGS)
(inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z))
error concat("atanh: ",TRCONST)
acoth z ==
empty? z =>
TRANSFCN => acoth(0)$Coef :: ST
error concat("acoth: ",TRCONST)
TRANSFCN =>
frst z = 1 or frst z = -1 => error concat("acoth: ",LOGS)
(inv(2::RN)::Coef) * log((z + (1 :: ST))/(z - (1 :: ST)))
error concat("acoth: ",TRCONST)
asech z ==
empty? z => error "asech: asech(0) is undefined"
TRANSFCN =>
(coef := frst z) = 0 => error concat("asech: ",NPOWLOG)
coef = 1 or coef = -1 =>
x := (1 :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asech: ",MAYFPOW)
(order := ord :: I) = -1 => return asech(coef) :: ST
odd? order => error concat("asech: ",FPOWERS)
log(((1 :: ST) + powern(1/2,x))/z)
log(((1 :: ST) + powern(1/2,(1 :: ST) - z*z))/z)
error concat("asech: ",TRCONST)
acsch z ==
empty? z => error "acsch: acsch(0) is undefined"
TRANSFCN =>
frst z = 0 => error concat("acsch: ",NPOWLOG)
x := z*z + (1 :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acsc: ",MAYFPOW)
(order := ord :: I) = -1 => return acsch(frst z) :: ST
odd? order => error concat("acsch: ",FPOWERS)
log(((1 :: ST) + powern(1/2,x))/z)
error concat("acsch: ",TRCONST)
|