This file is indexed.

/usr/share/axiom-20170501/src/algebra/STTFNC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
)abbrev package STTFNC StreamTranscendentalFunctionsNonCommutative
++ Author: Clifton J. Williamson
++ Date Created: 26 May 1994
++ Date Last Updated: 26 May 1994
++ Description:
++ StreamTranscendentalFunctionsNonCommutative implements transcendental
++ functions on Taylor series over a non-commutative ring, where a Taylor
++ series is represented by a stream of its coefficients.

StreamTranscendentalFunctionsNonCommutative(Coef) : SIG == CODE where
  Coef : Algebra Fraction Integer

  I    ==> Integer
  SG   ==> String
  ST   ==> Stream Coef
  STTF ==> StreamTranscendentalFunctions Coef

  SIG ==> with

--% Exponentials and Logarithms

    exp : ST -> ST
      ++ exp(st) computes the exponential of a power series st.

    log : ST -> ST
      ++ log(st) computes the log of a power series.

    "**" : (ST,ST) -> ST
      ++ st1 ** st2 computes the power of a power series st1 by another
      ++ power series st2.

--% TrigonometricFunctionCategory

    sin : ST -> ST
      ++ sin(st) computes sine of a power series st.

    cos : ST -> ST
      ++ cos(st) computes cosine of a power series st.

    tan : ST -> ST
      ++ tan(st) computes tangent of a power series st.

    cot : ST -> ST
      ++ cot(st) computes cotangent of a power series st.

    sec : ST -> ST
      ++ sec(st) computes secant of a power series st.

    csc : ST -> ST
      ++ csc(st) computes cosecant of a power series st.

    asin : ST -> ST
      ++ asin(st) computes arcsine of a power series st.

    acos : ST -> ST
      ++ acos(st) computes arccosine of a power series st.

    atan : ST -> ST
      ++ atan(st) computes arctangent of a power series st.

    acot : ST -> ST
      ++ acot(st) computes arccotangent of a power series st.

    asec : ST -> ST
      ++ asec(st) computes arcsecant of a power series st.

    acsc : ST -> ST
      ++ acsc(st) computes arccosecant of a power series st.

--% HyperbloicTrigonometricFunctionCategory

    sinh : ST -> ST
      ++ sinh(st) computes the hyperbolic sine of a power series st.

    cosh : ST -> ST
      ++ cosh(st) computes the hyperbolic cosine of a power series st.

    tanh : ST -> ST
      ++ tanh(st) computes the hyperbolic tangent of a power series st.

    coth : ST -> ST
      ++ coth(st) computes the hyperbolic cotangent of a power series st.

    sech : ST -> ST
      ++ sech(st) computes the hyperbolic secant of a power series st.

    csch : ST -> ST
      ++ csch(st) computes the hyperbolic cosecant of a power series st.

    asinh : ST -> ST
      ++ asinh(st) computes the inverse hyperbolic sine of a power series st.

    acosh : ST -> ST
      ++ acosh(st) computes the inverse hyperbolic cosine
      ++ of a power series st.

    atanh : ST -> ST
      ++ atanh(st) computes the inverse hyperbolic tangent
      ++ of a power series st.

    acoth : ST -> ST
      ++ acoth(st) computes the inverse hyperbolic
      ++ cotangent of a power series st.

    asech : ST -> ST
      ++ asech(st) computes the inverse hyperbolic secant of a
      ++ power series st.

    acsch : ST -> ST
      ++ acsch(st) computes the inverse hyperbolic
      ++ cosecant of a power series st.

  CODE ==> add

    import StreamTaylorSeriesOperations(Coef)

--% Error Reporting

    ZERO    : SG := "series must have constant coefficient zero"
    ONE     : SG := "series must have constant coefficient one"
    NPOWERS : SG := "series expansion has terms of negative degree"

--% Exponentials and Logarithms

    exp z ==
      empty? z => 1 :: ST
      (frst z) = 0 =>
        expx := exp(monom(1,1))$STTF
        compose(expx,z)
      error concat("exp: ",ZERO)

    log z ==
      empty? z => error concat("log: ",ONE)
      (frst z) = 1 =>
        log1PlusX := log(monom(1,0) + monom(1,1))$STTF
        compose(log1PlusX,z - monom(1,0))
      error concat("log: ",ONE)

    (z1:ST) ** (z2:ST) == exp(log(z1) * z2)

--% Trigonometric Functions

    sin z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        sinx := sin(monom(1,1))$STTF
        compose(sinx,z)
      error concat("sin: ",ZERO)

    cos z ==
      empty? z => 1 :: ST
      (frst z) = 0 =>
        cosx := cos(monom(1,1))$STTF
        compose(cosx,z)
      error concat("cos: ",ZERO)

    tan z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        tanx := tan(monom(1,1))$STTF
        compose(tanx,z)
      error concat("tan: ",ZERO)

    cot z ==
      empty? z => error "cot: cot(0) is undefined"
      (frst z) = 0 => error concat("cot: ",NPOWERS)
      error concat("cot: ",ZERO)

    sec z ==
      empty? z => 1 :: ST
      (frst z) = 0 =>
        secx := sec(monom(1,1))$STTF
        compose(secx,z)
      error concat("sec: ",ZERO)

    csc z ==
      empty? z => error "csc: csc(0) is undefined"
      (frst z) = 0 => error concat("csc: ",NPOWERS)
      error concat("csc: ",ZERO)

    asin z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        asinx := asin(monom(1,1))$STTF
        compose(asinx,z)
      error concat("asin: ",ZERO)

    atan z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        atanx := atan(monom(1,1))$STTF
        compose(atanx,z)
      error concat("atan: ",ZERO)

    acos z == error "acos: acos undefined on this coefficient domain"

    acot z == error "acot: acot undefined on this coefficient domain"

    asec z == error "asec: asec undefined on this coefficient domain"

    acsc z == error "acsc: acsc undefined on this coefficient domain"

--% Hyperbolic Trigonometric Functions

    sinh z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        sinhx := sinh(monom(1,1))$STTF
        compose(sinhx,z)
      error concat("sinh: ",ZERO)

    cosh z ==
      empty? z => 1 :: ST
      (frst z) = 0 =>
        coshx := cosh(monom(1,1))$STTF
        compose(coshx,z)
      error concat("cosh: ",ZERO)

    tanh z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        tanhx := tanh(monom(1,1))$STTF
        compose(tanhx,z)
      error concat("tanh: ",ZERO)

    coth z ==
      empty? z => error "coth: coth(0) is undefined"
      (frst z) = 0 => error concat("coth: ",NPOWERS)
      error concat("coth: ",ZERO)

    sech z ==
      empty? z => 1 :: ST
      (frst z) = 0 =>
        sechx := sech(monom(1,1))$STTF
        compose(sechx,z)
      error concat("sech: ",ZERO)

    csch z ==
      empty? z => error "csch: csch(0) is undefined"
      (frst z) = 0 => error concat("csch: ",NPOWERS)
      error concat("csch: ",ZERO)

    asinh z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        asinhx := asinh(monom(1,1))$STTF
        compose(asinhx,z)
      error concat("asinh: ",ZERO)

    atanh z ==
      empty? z => 0 :: ST
      (frst z) = 0 =>
        atanhx := atanh(monom(1,1))$STTF
        compose(atanhx,z)
      error concat("atanh: ",ZERO)

    acosh z == error "acosh: acosh undefined on this coefficient domain"

    acoth z == error "acoth: acoth undefined on this coefficient domain"

    asech z == error "asech: asech undefined on this coefficient domain"

    acsch z == error "acsch: acsch undefined on this coefficient domain"