This file is indexed.

/usr/share/axiom-20170501/src/algebra/SULS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
)abbrev domain SULS SparseUnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 11 November 1994
++ Date Last Updated: 10 March 1995
++ Description:
++ Sparse Laurent series in one variable
++ \spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent
++ series in one variable with coefficients in an arbitrary ring.  The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion.  For example,
++ \spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent
++ series in \spad{(x - 3)} with integer coefficients.

SparseUnivariateLaurentSeries(Coef,var,cen) : SIG == CODE where
  Coef : Ring
  var  : Symbol
  cen  : Coef

  I     ==> Integer
  NNI   ==> NonNegativeInteger
  OUT   ==> OutputForm
  P     ==> Polynomial Coef
  RF    ==> Fraction Polynomial Coef
  RN    ==> Fraction Integer
  S     ==> String
  SUTS  ==> SparseUnivariateTaylorSeries(Coef,var,cen)
  EFULS ==> ElementaryFunctionsUnivariateLaurentSeries(Coef,SUTS,%)

  SIG ==> UnivariateLaurentSeriesConstructorCategory(Coef,SUTS) with

    coerce : Variable(var) -> %
      ++ \spad{coerce(var)} converts the series variable \spad{var} into a
      ++ Laurent series.

    differentiate : (%,Variable(var)) -> %
      ++ \spad{differentiate(f(x),x)} returns the derivative of
      ++ \spad{f(x)} with respect to \spad{x}.

    if Coef has Algebra Fraction Integer then

      integrate : (%,Variable(var)) -> %
        ++ \spad{integrate(f(x))} returns an anti-derivative of the power
        ++ series \spad{f(x)} with constant coefficient 0.
        ++ We may integrate a series when we can divide coefficients
        ++ by integers.

  CODE ==> InnerSparseUnivariatePowerSeries(Coef) add

    Rep := InnerSparseUnivariatePowerSeries(Coef)

    variable x == var
    center   x == cen

    coerce(v: Variable(var)) ==
      zero? cen => monomial(1,1)
      monomial(1,1) + monomial(cen,0)

    pole? x == negative? order(x,0)

--% operations with Taylor series

    coerce(uts:SUTS) == uts pretend %

    taylorIfCan uls ==
      pole? uls => "failed"
      uls pretend SUTS

    taylor uls ==
      (uts := taylorIfCan uls) case "failed" =>
        error "taylor: Laurent series has a pole"
      uts :: SUTS

    retractIfCan(x:%):Union(SUTS,"failed") == taylorIfCan x

    laurent(n,uts) == monomial(1,n) * (uts :: %)

    removeZeroes uls    == uls
    removeZeroes(n,uls) == uls

    taylorRep uls == taylor(monomial(1,-order(uls,0)) * uls)
    degree uls    == order(uls,0)

    numer uls == taylorRep uls
    denom uls == monomial(1,(-order(uls,0)) :: NNI)$SUTS

    (uts:SUTS) * (uls:%) == (uts :: %) * uls
    (uls:%) * (uts:SUTS) == uls * (uts :: %)

    if Coef has Field then
      (uts1:SUTS) / (uts2:SUTS) == (uts1 :: %) / (uts2 :: %)

    recip(uls) == iExquo(1,uls,false)

    if Coef has IntegralDomain then
      uls1 exquo uls2 == iExquo(uls1,uls2,false)

    if Coef has Field then
      uls1:% / uls2:% ==
        (q := uls1 exquo uls2) case "failed" =>
          error "quotient cannot be computed"
        q :: %

    differentiate(uls:%,v:Variable(var)) == differentiate uls

    elt(uls1:%,uls2:%) ==
      order(uls2,1) < 1 =>
        error "elt: second argument must have positive order"
      negative?(ord := order(uls1,0)) =>
        (recipr := recip uls2) case "failed" =>
          error "elt: second argument not invertible"
        uls3 := uls1 * monomial(1,-ord)
        iCompose(uls3,uls2) * (recipr :: %) ** ((-ord) :: NNI)
      iCompose(uls1,uls2)

    if Coef has IntegralDomain then
      rationalFunction(uls,n) ==
        zero?(e := order(uls,0)) =>
          negative? n => 0
          polynomial(taylor uls,n :: NNI) :: RF
        negative?(m := n - e) => 0
        poly := polynomial(taylor(monomial(1,-e) * uls),m :: NNI) :: RF
        v := variable(uls) :: RF; c := center(uls) :: P :: RF
        poly / (v - c) ** ((-e) :: NNI)

      rationalFunction(uls,n1,n2) == rationalFunction(truncate(uls,n1,n2),n2)

    if Coef has Algebra Fraction Integer then

      integrate uls ==
        zero? coefficient(uls,-1) =>
          error "integrate: series has term of order -1"
        integrate(uls)$Rep

      integrate(uls:%,v:Variable(var)) == integrate uls

      (uls1:%) ** (uls2:%) == exp(log(uls1) * uls2)

      exp uls   == exp(uls)$EFULS

      log uls   == log(uls)$EFULS

      sin uls   == sin(uls)$EFULS

      cos uls   == cos(uls)$EFULS

      tan uls   == tan(uls)$EFULS

      cot uls   == cot(uls)$EFULS

      sec uls   == sec(uls)$EFULS

      csc uls   == csc(uls)$EFULS

      asin uls  == asin(uls)$EFULS

      acos uls  == acos(uls)$EFULS

      atan uls  == atan(uls)$EFULS

      acot uls  == acot(uls)$EFULS

      asec uls  == asec(uls)$EFULS

      acsc uls  == acsc(uls)$EFULS

      sinh uls  == sinh(uls)$EFULS

      cosh uls  == cosh(uls)$EFULS

      tanh uls  == tanh(uls)$EFULS

      coth uls  == coth(uls)$EFULS

      sech uls  == sech(uls)$EFULS

      csch uls  == csch(uls)$EFULS

      asinh uls == asinh(uls)$EFULS

      acosh uls == acosh(uls)$EFULS

      atanh uls == atanh(uls)$EFULS

      acoth uls == acoth(uls)$EFULS

      asech uls == asech(uls)$EFULS

      acsch uls == acsch(uls)$EFULS

      if Coef has CommutativeRing then

        (uls:%) ** (r:RN) == cRationalPower(uls,r)

      else

        (uls:%) ** (r:RN) ==
          negative?(ord0 := order(uls,0)) =>
            order := ord0 :: I
            (n := order exquo denom(r)) case "failed" =>
              error "**: rational power does not exist"
            uts := retract(uls * monomial(1,-order))@SUTS
            utsPow := (uts ** r) :: %
            monomial(1,(n :: I) * numer(r)) * utsPow
          uts := retract(uls)@SUTS
          (uts ** r) :: %

--% OutputForms

    coerce(uls:%): OUT ==
      st := getStream uls
      if not(explicitlyEmpty? st or explicitEntries? st) _
        and (nx := retractIfCan(elt getRef uls))@Union(I,"failed") case I then
        count : NNI := _$streamCount$Lisp
        degr := min(count,(nx :: I) + count + 1)
        extend(uls,degr)
      seriesToOutputForm(st,getRef uls,variable uls,center uls,1)