/usr/share/axiom-20170501/src/algebra/SUP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | )abbrev domain SUP SparseUnivariatePolynomial
++ Author: Dave Barton, Barry Trager
++ Description:
++ This domain represents univariate polynomials over arbitrary
++ (not necessarily commutative) coefficient rings. The variable is
++ unspecified so that the variable displays as \spad{?} on output.
++ If it is necessary to specify the variable name,
++ use type \spadtype{UnivariatePolynomial}. The representation is sparse
++ in the sense that only non-zero terms are represented.
++ Note that if the coefficient ring is a field,
++ this domain forms a euclidean domain.
SparseUnivariatePolynomial(R) : SIG == CODE where
R : Ring
SIG ==> UnivariatePolynomialCategory(R) with
outputForm : (%,OutputForm) -> OutputForm
++ outputForm(p,var) converts the SparseUnivariatePolynomial p to
++ an output form (see \spadtype{OutputForm}) printed as a polynomial
++ in the output form variable.
fmecg : (%,NonNegativeInteger,R,%) -> %
++ fmecg(p1,e,r,p2) finds x : p1 - r * x**e * p2
CODE ==> PolynomialRing(R,NonNegativeInteger) add
--representations
Term := Record(k:NonNegativeInteger,c:R)
Rep := List Term
p:%
n:NonNegativeInteger
np: PositiveInteger
FP ==> SparseUnivariatePolynomial %
pp,qq: FP
lpp:List FP
-- for karatsuba
kBound: NonNegativeInteger := 63
upmp := UnivariatePolynomialMultiplicationPackage(R,%)
if R has FieldOfPrimeCharacteristic then
p ** np == p ** (np pretend NonNegativeInteger)
p ^ np == p ** (np pretend NonNegativeInteger)
p ^ n == p ** n
p ** n ==
null p => 0
zero? n => 1
(n = 1) => p
empty? p.rest =>
zero?(cc:=p.first.c ** n) => 0
[[n * p.first.k, cc]]
-- not worth doing special trick if characteristic is too small
if characteristic()$R < 3 then _
return expt(p,n pretend PositiveInteger)$RepeatedSquaring(%)
y:%:=1
-- break up exponent in qn * characteristic + rn
-- exponentiating by the characteristic is fast
rec := divide(n, characteristic()$R)
qn:= rec.quotient
rn:= rec.remainder
repeat
if rn = 1 then y := y * p
if rn > 1 then y:= y * binomThmExpt([p.first], p.rest, rn)
zero? qn => return y
-- raise to the characteristic power
p:= [[t.k * characteristic()$R , primeFrobenius(t.c)$R ]$Term _
for t in p]
rec := divide(qn, characteristic()$R)
qn:= rec.quotient
rn:= rec.remainder
y
zero?(p): Boolean ==
empty?(p)
one?(p):Boolean ==
not empty? p and (empty? rest p and zero? first(p).k and (first(p).c = 1))
ground?(p): Boolean ==
empty? p or (empty? rest p and zero? first(p).k)
multiplyExponents(p,n) ==
[ [u.k*n,u.c] for u in p]
divideExponents(p,n) ==
null p => p
m:= (p.first.k :: Integer exquo n::Integer)
m case "failed" => "failed"
u:= divideExponents(p.rest,n)
u case "failed" => "failed"
[[m::Integer::NonNegativeInteger,p.first.c],:u]
karatsubaDivide(p, n) ==
zero? n => [p, 0]
lowp: Rep := p
highp: Rep := []
repeat
if empty? lowp then break
t := first lowp
if t.k < n then break
lowp := rest lowp
highp := cons([subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term,highp)
[ reverse highp, lowp]
shiftRight(p, n) ==
[[subtractIfCan(t.k,n)::NonNegativeInteger,t.c]$Term for t in p]
shiftLeft(p, n) ==
[[t.k + n,t.c]$Term for t in p]
pomopo!(p1,r,e,p2) ==
rout:%:= []
for tm in p2 repeat
e2:= e + tm.k
c2:= r * tm.c
c2 = 0 => "next term"
while not null p1 and p1.first.k > e2 repeat
(rout:=[p1.first,:rout]; p1:=p1.rest) --use PUSH and POP?
null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
if (u:=p1.first.c + c2) ^= 0 then rout:=[[e2, u],:rout]
p1:=p1.rest
NRECONC(rout,p1)$Lisp
univariate(p:%) == p pretend SparseUnivariatePolynomial(R)
multivariate(sup:SparseUnivariatePolynomial(R),v:SingletonAsOrderedSet) ==
sup pretend %
univariate(p:%,v:SingletonAsOrderedSet) ==
zero? p => 0
monomial(leadingCoefficient(p)::%,degree p) +
univariate(reductum p,v)
multivariate(supp:SparseUnivariatePolynomial(%),v:SingletonAsOrderedSet) ==
zero? supp => 0
lc:=leadingCoefficient supp
degree lc > 0 => error "bad form polynomial"
monomial(leadingCoefficient lc,degree supp) +
multivariate(reductum supp,v)
if R has FiniteFieldCategory and R has PolynomialFactorizationExplicit then
RXY ==> SparseUnivariatePolynomial SparseUnivariatePolynomial R
squareFreePolynomial pp ==
squareFree(pp)$UnivariatePolynomialSquareFree(%,FP)
factorPolynomial pp ==
(generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
pretend Factored SparseUnivariatePolynomial %
factorSquareFreePolynomial pp ==
(generalTwoFactor(pp pretend RXY)$TwoFactorize(R))
pretend Factored SparseUnivariatePolynomial %
gcdPolynomial(pp,qq) == gcd(pp,qq)$FP
factor p == factor(p)$DistinctDegreeFactorize(R,%)
solveLinearPolynomialEquation(lpp,pp) ==
solveLinearPolynomialEquation(lpp, pp)_
$FiniteFieldSolveLinearPolynomialEquation(R,%,FP)
else if R has PolynomialFactorizationExplicit then
import PolynomialFactorizationByRecursionUnivariate(R,%)
solveLinearPolynomialEquation(lpp,pp)==
solveLinearPolynomialEquationByRecursion(lpp,pp)
factorPolynomial(pp) ==
factorByRecursion(pp)
factorSquareFreePolynomial(pp) ==
factorSquareFreeByRecursion(pp)
if R has IntegralDomain then
if R has approximate then
p1 exquo p2 ==
null p2 => error "Division by 0"
p2 = 1 => p1
p1=p2 => 1
rout:= []@List(Term)
while not null p1 repeat
(a:= p1.first.c exquo p2.first.c)
a case "failed" => return "failed"
ee:= subtractIfCan(p1.first.k, p2.first.k)
ee case "failed" => return "failed"
p1:= fmecg(p1.rest, ee, a, p2.rest)
rout:= [[ee,a], :rout]
null p1 => reverse(rout)::% -- nreverse?
"failed"
else -- R not approximate
p1 exquo p2 ==
null p2 => error "Division by 0"
p2 = 1 => p1
rout:= []@List(Term)
while not null p1 repeat
(a:= p1.first.c exquo p2.first.c)
a case "failed" => return "failed"
ee:= subtractIfCan(p1.first.k, p2.first.k)
ee case "failed" => return "failed"
p1:= fmecg(p1.rest, ee, a, p2.rest)
rout:= [[ee,a], :rout]
null p1 => reverse(rout)::% -- nreverse?
"failed"
fmecg(p1,e,r,p2) == -- p1 - r * x**e * p2
rout:%:= []
r:= - r
for tm in p2 repeat
e2:= e + tm.k
c2:= r * tm.c
c2 = 0 => "next term"
while not null p1 and p1.first.k > e2 repeat
(rout:=[p1.first,:rout]; p1:=p1.rest) --use PUSH and POP?
null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
if (u:=p1.first.c + c2) ^= 0 then rout:=[[e2, u],:rout]
p1:=p1.rest
NRECONC(rout,p1)$Lisp
pseudoRemainder(p1,p2) ==
null p2 => error "PseudoDivision by Zero"
null p1 => 0
co:=p2.first.c;
e:=p2.first.k;
p2:=p2.rest;
e1:=max(p1.first.k:Integer-e+1,0):NonNegativeInteger
while not null p1 repeat
if (u:=subtractIfCan(p1.first.k,e)) case "failed" then leave
p1:=fmecg(co * p1.rest, u, p1.first.c, p2)
e1:= (e1 - 1):NonNegativeInteger
e1 = 0 => p1
co ** e1 * p1
toutput(t1:Term,v:OutputForm):OutputForm ==
t1.k = 0 => t1.c :: OutputForm
if t1.k = 1
then mon:= v
else mon := v ** t1.k::OutputForm
t1.c = 1 => mon
t1.c = -1 and
((t1.c :: OutputForm) = (-1$Integer)::OutputForm)@Boolean => - mon
t1.c::OutputForm * mon
outputForm(p:%,v:OutputForm) ==
l: List(OutputForm)
l:=[toutput(t,v) for t in p]
null l => (0$Integer)::OutputForm -- else FreeModule 0 problems
reduce("+",l)
coerce(p:%):OutputForm == outputForm(p, "?"::OutputForm)
elt(p:%,val:R) ==
null p => 0$R
co:=p.first.c
n:=p.first.k
for tm in p.rest repeat
co:= co * val ** (n - (n:=tm.k)):NonNegativeInteger + tm.c
n = 0 => co
co * val ** n
elt(p:%,val:%) ==
null p => 0$%
coef:% := p.first.c :: %
n:=p.first.k
for tm in p.rest repeat
coef:= coef * val ** (n-(n:=tm.k)):NonNegativeInteger+(tm.c::%)
n = 0 => coef
coef * val ** n
monicDivide(p1:%,p2:%) ==
null p2 => error "monicDivide: division by 0"
leadingCoefficient p2 ^= 1 => error "Divisor Not Monic"
p2 = 1 => [p1,0]
null p1 => [0,0]
degree p1 < (n:=degree p2) => [0,p1]
rout:Rep := []
p2 := p2.rest
while not null p1 repeat
(u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
rout:=[[u, p1.first.c], :rout]
p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
[reverse_!(rout),p1]
if R has IntegralDomain then
discriminant(p) == discriminant(p)$PseudoRemainderSequence(R,%)
subResultantGcd(p1,p2) ==
subResultantGcd(p1,p2)$PseudoRemainderSequence(R,%)
resultant(p1,p2) == resultant(p1,p2)$PseudoRemainderSequence(R,%)
if R has GcdDomain then
content(p) == if null p then 0$R else "gcd"/[tm.c for tm in p]
--make CONTENT more efficient?
primitivePart(p) ==
null p => p
ct :=content(p)
unitCanonical((p exquo ct)::%)
-- exquo present since % is now an IntegralDomain
gcd(p1,p2) ==
gcdPolynomial(p1 pretend SparseUnivariatePolynomial R,
p2 pretend SparseUnivariatePolynomial R) pretend %
if R has Field then
divide( p1, p2) ==
zero? p2 => error "Division by 0"
(p2 = 1) => [p1,0]
ct:=inv(p2.first.c)
n:=p2.first.k
p2:=p2.rest
rout:=empty()$List(Term)
while p1 ^= 0 repeat
(u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
rout:=[[u, ct * p1.first.c], :rout]
p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
[reverse_!(rout),p1]
p / co == inv(co) * p
|