/usr/share/axiom-20170501/src/algebra/SUTS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | )abbrev domain SUTS SparseUnivariateTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 16 February 1990
++ Date Last Updated: 10 March 1995
++ Description:
++ Sparse Taylor series in one variable
++ \spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor
++ series in one variable with coefficients in an arbitrary ring. The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion. For example,
++ \spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor
++ series in \spad{(x - 3)} with \spadtype{Integer} coefficients.
SparseUnivariateTaylorSeries(Coef,var,cen) : SIG == CODE where
Coef : Ring
var : Symbol
cen : Coef
COM ==> OrderedCompletion Integer
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Polynomial Coef
REF ==> Reference OrderedCompletion Integer
RN ==> Fraction Integer
Term ==> Record(k:Integer,c:Coef)
SG ==> String
ST ==> Stream Term
UP ==> UnivariatePolynomial(var,Coef)
SIG ==> UnivariateTaylorSeriesCategory(Coef) with
coerce : UP -> %
++\spad{coerce(p)} converts a univariate polynomial p in the variable
++\spad{var} to a univariate Taylor series in \spad{var}.
univariatePolynomial : (%,NNI) -> UP
++\spad{univariatePolynomial(f,k)} returns a univariate polynomial
++ consisting of the sum of all terms of f of degree \spad{<= k}.
coerce : Variable(var) -> %
++\spad{coerce(var)} converts the series variable \spad{var} into a
++ Taylor series.
differentiate : (%,Variable(var)) -> %
++ \spad{differentiate(f(x),x)} computes the derivative of
++ \spad{f(x)} with respect to \spad{x}.
if Coef has Algebra Fraction Integer then
integrate : (%,Variable(var)) -> %
++ \spad{integrate(f(x),x)} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
CODE ==> InnerSparseUnivariatePowerSeries(Coef) add
import REF
Rep := InnerSparseUnivariatePowerSeries(Coef)
makeTerm: (Integer,Coef) -> Term
makeTerm(exp,coef) == [exp,coef]
getCoef: Term -> Coef
getCoef term == term.c
getExpon: Term -> Integer
getExpon term == term.k
monomial(coef,expon) == monomial(coef,expon)$Rep
extend(x,n) == extend(x,n)$Rep
0 == monomial(0,0)$Rep
1 == monomial(1,0)$Rep
recip uts == iExquo(1,uts,true)
if Coef has IntegralDomain then
uts1 exquo uts2 == iExquo(uts1,uts2,true)
quoByVar uts == taylorQuoByVar(uts)$Rep
differentiate(x:%,v:Variable(var)) == differentiate x
--% Creation and destruction of series
coerce(v: Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
coerce(p:UP) ==
zero? p => 0
if not zero? cen then p := p(monomial(1,1)$UP + monomial(cen,0)$UP)
st : ST := empty()
while not zero? p repeat
st := concat(makeTerm(degree p,leadingCoefficient p),st)
p := reductum p
makeSeries(ref plusInfinity(),st)
univariatePolynomial(x,n) ==
extend(x,n); st := getStream x
ans : UP := 0; oldDeg : I := 0;
mon := monomial(1,1)$UP - monomial(center x,0)$UP; monPow : UP := 1
while explicitEntries? st repeat
(xExpon := getExpon(xTerm := frst st)) > n => return ans
pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
monPow := monPow * mon ** pow
ans := ans + getCoef(xTerm) * monPow
st := rst st
ans
polynomial(x,n) ==
extend(x,n); st := getStream x
ans : P := 0; oldDeg : I := 0;
mon := (var :: P) - (center(x) :: P); monPow : P := 1
while explicitEntries? st repeat
(xExpon := getExpon(xTerm := frst st)) > n => return ans
pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
monPow := monPow * mon ** pow
ans := ans + getCoef(xTerm) * monPow
st := rst st
ans
polynomial(x,n1,n2) == polynomial(truncate(x,n1,n2),n2)
truncate(x,n) == truncate(x,n)$Rep
truncate(x,n1,n2) == truncate(x,n1,n2)$Rep
iCoefficients: (ST,REF,I) -> Stream Coef
iCoefficients(x,refer,n) == delay
-- when this function is called, we are computing the nth order
-- coefficient of the series
explicitlyEmpty? x => empty()
-- if terms up to order n have not been computed,
-- apply lazy evaluation
nn := n :: COM
while (nx := elt refer) < nn repeat lazyEvaluate x
-- must have nx >= n
explicitEntries? x =>
xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
xExpon = n => concat(xCoef,iCoefficients(rst x,refer,n + 1))
-- must have nx > n
concat(0,iCoefficients(x,refer,n + 1))
concat(0,iCoefficients(x,refer,n + 1))
coefficients uts ==
refer := getRef uts; x := getStream uts
iCoefficients(x,refer,0)
terms uts == terms(uts)$Rep pretend Stream Record(k:NNI,c:Coef)
iSeries: (Stream Coef,I,REF) -> ST
iSeries(st,n,refer) == delay
-- when this function is called, we are creating the nth order
-- term of a series
empty? st => (setelt(refer,plusInfinity()); empty())
setelt(refer,n :: COM)
zero? (coef := frst st) => iSeries(rst st,n + 1,refer)
concat(makeTerm(n,coef),iSeries(rst st,n + 1,refer))
series(st:Stream Coef) ==
refer := ref(-1)
makeSeries(refer,iSeries(st,0,refer))
nniToI: Stream Record(k:NNI,c:Coef) -> ST
nniToI st ==
empty? st => empty()
term : Term := [(frst st).k,(frst st).c]
concat(term,nniToI rst st)
series(st:Stream Record(k:NNI,c:Coef)) == series(nniToI st)$Rep
--% Values
variable x == var
center x == cen
coefficient(x,n) == coefficient(x,n)$Rep
elt(x:%,n:NonNegativeInteger) == coefficient(x,n)
pole? x == false
order x == (order(x)$Rep) :: NNI
order(x,n) == (order(x,n)$Rep) :: NNI
--% Composition
elt(uts1:%,uts2:%) ==
zero? uts2 => coefficient(uts1,0) :: %
not zero? coefficient(uts2,0) =>
error "elt: second argument must have positive order"
iCompose(uts1,uts2)
--% Integration
if Coef has Algebra Fraction Integer then
integrate(x:%,v:Variable(var)) == integrate x
--% Transcendental functions
(uts1:%) ** (uts2:%) == exp(log(uts1) * uts2)
if Coef has CommutativeRing then
(uts:%) ** (r:RN) == cRationalPower(uts,r)
exp uts == cExp uts
log uts == cLog uts
sin uts == cSin uts
cos uts == cCos uts
tan uts == cTan uts
cot uts == cCot uts
sec uts == cSec uts
csc uts == cCsc uts
asin uts == cAsin uts
acos uts == cAcos uts
atan uts == cAtan uts
acot uts == cAcot uts
asec uts == cAsec uts
acsc uts == cAcsc uts
sinh uts == cSinh uts
cosh uts == cCosh uts
tanh uts == cTanh uts
coth uts == cCoth uts
sech uts == cSech uts
csch uts == cCsch uts
asinh uts == cAsinh uts
acosh uts == cAcosh uts
atanh uts == cAtanh uts
acoth uts == cAcoth uts
asech uts == cAsech uts
acsch uts == cAcsch uts
else
ZERO : SG := "series must have constant coefficient zero"
ONE : SG := "series must have constant coefficient one"
NPOWERS : SG := "series expansion has terms of negative degree"
(uts:%) ** (r:RN) ==
not (coefficient(uts,0) = 1) =>
error "**: constant coefficient must be one"
onePlusX : % := monomial(1,0) + monomial(1,1)
ratPow := cPower(uts,r :: Coef)
iCompose(ratPow,uts - 1)
exp uts ==
zero? coefficient(uts,0) =>
expx := cExp monomial(1,1)
iCompose(expx,uts)
error concat("exp: ",ZERO)
log uts ==
(coefficient(uts,0) = 1) =>
log1PlusX := cLog(monomial(1,0) + monomial(1,1))
iCompose(log1PlusX,uts - 1)
error concat("log: ",ONE)
sin uts ==
zero? coefficient(uts,0) =>
sinx := cSin monomial(1,1)
iCompose(sinx,uts)
error concat("sin: ",ZERO)
cos uts ==
zero? coefficient(uts,0) =>
cosx := cCos monomial(1,1)
iCompose(cosx,uts)
error concat("cos: ",ZERO)
tan uts ==
zero? coefficient(uts,0) =>
tanx := cTan monomial(1,1)
iCompose(tanx,uts)
error concat("tan: ",ZERO)
cot uts ==
zero? uts => error "cot: cot(0) is undefined"
zero? coefficient(uts,0) => error concat("cot: ",NPOWERS)
error concat("cot: ",ZERO)
sec uts ==
zero? coefficient(uts,0) =>
secx := cSec monomial(1,1)
iCompose(secx,uts)
error concat("sec: ",ZERO)
csc uts ==
zero? uts => error "csc: csc(0) is undefined"
zero? coefficient(uts,0) => error concat("csc: ",NPOWERS)
error concat("csc: ",ZERO)
asin uts ==
zero? coefficient(uts,0) =>
asinx := cAsin monomial(1,1)
iCompose(asinx,uts)
error concat("asin: ",ZERO)
atan uts ==
zero? coefficient(uts,0) =>
atanx := cAtan monomial(1,1)
iCompose(atanx,uts)
error concat("atan: ",ZERO)
acos z == error "acos: acos undefined on this coefficient domain"
acot z == error "acot: acot undefined on this coefficient domain"
asec z == error "asec: asec undefined on this coefficient domain"
acsc z == error "acsc: acsc undefined on this coefficient domain"
sinh uts ==
zero? coefficient(uts,0) =>
sinhx := cSinh monomial(1,1)
iCompose(sinhx,uts)
error concat("sinh: ",ZERO)
cosh uts ==
zero? coefficient(uts,0) =>
coshx := cCosh monomial(1,1)
iCompose(coshx,uts)
error concat("cosh: ",ZERO)
tanh uts ==
zero? coefficient(uts,0) =>
tanhx := cTanh monomial(1,1)
iCompose(tanhx,uts)
error concat("tanh: ",ZERO)
coth uts ==
zero? uts => error "coth: coth(0) is undefined"
zero? coefficient(uts,0) => error concat("coth: ",NPOWERS)
error concat("coth: ",ZERO)
sech uts ==
zero? coefficient(uts,0) =>
sechx := cSech monomial(1,1)
iCompose(sechx,uts)
error concat("sech: ",ZERO)
csch uts ==
zero? uts => error "csch: csch(0) is undefined"
zero? coefficient(uts,0) => error concat("csch: ",NPOWERS)
error concat("csch: ",ZERO)
asinh uts ==
zero? coefficient(uts,0) =>
asinhx := cAsinh monomial(1,1)
iCompose(asinhx,uts)
error concat("asinh: ",ZERO)
atanh uts ==
zero? coefficient(uts,0) =>
atanhx := cAtanh monomial(1,1)
iCompose(atanhx,uts)
error concat("atanh: ",ZERO)
acosh uts == error "acosh: acosh undefined on this coefficient domain"
acoth uts == error "acoth: acoth undefined on this coefficient domain"
asech uts == error "asech: asech undefined on this coefficient domain"
acsch uts == error "acsch: acsch undefined on this coefficient domain"
if Coef has Field then
if Coef has Algebra Fraction Integer then
(uts:%) ** (r:Coef) ==
not (coefficient(uts,1) = 1) =>
error "**: constant coefficient should be 1"
cPower(uts,r)
--% OutputForms
coerce(x:%): OUT ==
count : NNI := _$streamCount$Lisp
extend(x,count)
seriesToOutputForm(getStream x,getRef x,variable x,center x,1)
|