This file is indexed.

/usr/share/axiom-20170501/src/algebra/SUTS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
)abbrev domain SUTS SparseUnivariateTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 16 February 1990
++ Date Last Updated: 10 March 1995
++ Description:
++ Sparse Taylor series in one variable
++ \spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor
++ series in one variable with coefficients in an arbitrary ring.  The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion.  For example,
++ \spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor
++ series in \spad{(x - 3)} with \spadtype{Integer} coefficients.

SparseUnivariateTaylorSeries(Coef,var,cen) : SIG == CODE where
  Coef : Ring
  var  : Symbol
  cen  : Coef

  COM  ==> OrderedCompletion Integer
  I    ==> Integer
  L    ==> List
  NNI  ==> NonNegativeInteger
  OUT  ==> OutputForm
  P    ==> Polynomial Coef
  REF  ==> Reference OrderedCompletion Integer
  RN   ==> Fraction Integer
  Term ==> Record(k:Integer,c:Coef)
  SG   ==> String
  ST   ==> Stream Term
  UP   ==> UnivariatePolynomial(var,Coef)

  SIG ==> UnivariateTaylorSeriesCategory(Coef) with

    coerce : UP -> %
      ++\spad{coerce(p)} converts a univariate polynomial p in the variable
      ++\spad{var} to a univariate Taylor series in \spad{var}.

    univariatePolynomial : (%,NNI) -> UP
      ++\spad{univariatePolynomial(f,k)} returns a univariate polynomial
      ++ consisting of the sum of all terms of f of degree \spad{<= k}.

    coerce : Variable(var) -> %
      ++\spad{coerce(var)} converts the series variable \spad{var} into a
      ++ Taylor series.

    differentiate : (%,Variable(var)) -> %
      ++ \spad{differentiate(f(x),x)} computes the derivative of
      ++ \spad{f(x)} with respect to \spad{x}.

    if Coef has Algebra Fraction Integer then

      integrate : (%,Variable(var)) -> %
        ++ \spad{integrate(f(x),x)} returns an anti-derivative of the power
        ++ series \spad{f(x)} with constant coefficient 0.
        ++ We may integrate a series when we can divide coefficients
        ++ by integers.

  CODE ==> InnerSparseUnivariatePowerSeries(Coef) add

    import REF

    Rep := InnerSparseUnivariatePowerSeries(Coef)

    makeTerm: (Integer,Coef) -> Term
    makeTerm(exp,coef) == [exp,coef]

    getCoef: Term -> Coef
    getCoef term == term.c

    getExpon: Term -> Integer
    getExpon term == term.k

    monomial(coef,expon) == monomial(coef,expon)$Rep

    extend(x,n) == extend(x,n)$Rep

    0 == monomial(0,0)$Rep

    1 == monomial(1,0)$Rep

    recip uts == iExquo(1,uts,true)

    if Coef has IntegralDomain then
      uts1 exquo uts2 == iExquo(uts1,uts2,true)

    quoByVar uts == taylorQuoByVar(uts)$Rep

    differentiate(x:%,v:Variable(var)) == differentiate x

--% Creation and destruction of series

    coerce(v: Variable(var)) ==
      zero? cen => monomial(1,1)
      monomial(1,1) + monomial(cen,0)

    coerce(p:UP) ==
      zero? p => 0
      if not zero? cen then p := p(monomial(1,1)$UP + monomial(cen,0)$UP)
      st : ST := empty()
      while not zero? p repeat
        st := concat(makeTerm(degree p,leadingCoefficient p),st)
        p := reductum p
      makeSeries(ref plusInfinity(),st)

    univariatePolynomial(x,n) ==
      extend(x,n); st := getStream x
      ans : UP := 0; oldDeg : I := 0;
      mon := monomial(1,1)$UP - monomial(center x,0)$UP; monPow : UP := 1
      while explicitEntries? st repeat
        (xExpon := getExpon(xTerm := frst st)) > n => return ans
        pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
        monPow := monPow * mon ** pow
        ans := ans + getCoef(xTerm) * monPow
        st := rst st
      ans

    polynomial(x,n) ==
      extend(x,n); st := getStream x
      ans : P := 0; oldDeg : I := 0;
      mon := (var :: P) - (center(x) :: P); monPow : P := 1
      while explicitEntries? st repeat
        (xExpon := getExpon(xTerm := frst st)) > n => return ans
        pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon
        monPow := monPow * mon ** pow
        ans := ans + getCoef(xTerm) * monPow
        st := rst st
      ans

    polynomial(x,n1,n2) == polynomial(truncate(x,n1,n2),n2)

    truncate(x,n)     == truncate(x,n)$Rep

    truncate(x,n1,n2) == truncate(x,n1,n2)$Rep

    iCoefficients: (ST,REF,I) -> Stream Coef
    iCoefficients(x,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the series
      explicitlyEmpty? x => empty()
      -- if terms up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM
      while (nx := elt refer) < nn repeat lazyEvaluate x
      -- must have nx >= n
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
        xExpon = n => concat(xCoef,iCoefficients(rst x,refer,n + 1))
        -- must have nx > n
        concat(0,iCoefficients(x,refer,n + 1))
      concat(0,iCoefficients(x,refer,n + 1))

    coefficients uts ==
      refer := getRef uts; x := getStream uts
      iCoefficients(x,refer,0)

    terms uts == terms(uts)$Rep pretend Stream Record(k:NNI,c:Coef)

    iSeries: (Stream Coef,I,REF) -> ST
    iSeries(st,n,refer) == delay
      -- when this function is called, we are creating the nth order
      -- term of a series
      empty? st => (setelt(refer,plusInfinity()); empty())
      setelt(refer,n :: COM)
      zero? (coef := frst st) => iSeries(rst st,n + 1,refer)
      concat(makeTerm(n,coef),iSeries(rst st,n + 1,refer))

    series(st:Stream Coef) ==
      refer := ref(-1)
      makeSeries(refer,iSeries(st,0,refer))

    nniToI: Stream Record(k:NNI,c:Coef) -> ST
    nniToI st ==
      empty? st => empty()
      term : Term := [(frst st).k,(frst st).c]
      concat(term,nniToI rst st)

    series(st:Stream Record(k:NNI,c:Coef)) == series(nniToI st)$Rep

--% Values

    variable x == var

    center   x == cen

    coefficient(x,n) == coefficient(x,n)$Rep

    elt(x:%,n:NonNegativeInteger) == coefficient(x,n)

    pole? x == false

    order x    == (order(x)$Rep) :: NNI

    order(x,n) == (order(x,n)$Rep) :: NNI

--% Composition

    elt(uts1:%,uts2:%) ==
      zero? uts2 => coefficient(uts1,0) :: %
      not zero? coefficient(uts2,0) =>
        error "elt: second argument must have positive order"
      iCompose(uts1,uts2)

--% Integration

    if Coef has Algebra Fraction Integer then

      integrate(x:%,v:Variable(var)) == integrate x

--% Transcendental functions

      (uts1:%) ** (uts2:%) == exp(log(uts1) * uts2)

      if Coef has CommutativeRing then

        (uts:%) ** (r:RN) == cRationalPower(uts,r)

        exp uts == cExp uts

        log uts == cLog uts

        sin uts == cSin uts

        cos uts == cCos uts

        tan uts == cTan uts

        cot uts == cCot uts

        sec uts == cSec uts

        csc uts == cCsc uts

        asin uts == cAsin uts

        acos uts == cAcos uts

        atan uts == cAtan uts

        acot uts == cAcot uts

        asec uts == cAsec uts

        acsc uts == cAcsc uts

        sinh uts == cSinh uts

        cosh uts == cCosh uts

        tanh uts == cTanh uts

        coth uts == cCoth uts

        sech uts == cSech uts

        csch uts == cCsch uts

        asinh uts == cAsinh uts

        acosh uts == cAcosh uts

        atanh uts == cAtanh uts

        acoth uts == cAcoth uts

        asech uts == cAsech uts

        acsch uts == cAcsch uts

      else

        ZERO    : SG := "series must have constant coefficient zero"

        ONE     : SG := "series must have constant coefficient one"

        NPOWERS : SG := "series expansion has terms of negative degree"

        (uts:%) ** (r:RN) ==
          not (coefficient(uts,0) = 1) =>
            error "**: constant coefficient must be one"
          onePlusX : % := monomial(1,0) + monomial(1,1)
          ratPow := cPower(uts,r :: Coef)
          iCompose(ratPow,uts - 1)

        exp uts ==
          zero? coefficient(uts,0) =>
            expx := cExp monomial(1,1)
            iCompose(expx,uts)
          error concat("exp: ",ZERO)

        log uts ==
          (coefficient(uts,0) = 1) =>
            log1PlusX := cLog(monomial(1,0) + monomial(1,1))
            iCompose(log1PlusX,uts - 1)
          error concat("log: ",ONE)

        sin uts ==
          zero? coefficient(uts,0) =>
            sinx := cSin monomial(1,1)
            iCompose(sinx,uts)
          error concat("sin: ",ZERO)

        cos uts ==
          zero? coefficient(uts,0) =>
            cosx := cCos monomial(1,1)
            iCompose(cosx,uts)
          error concat("cos: ",ZERO)

        tan uts ==
          zero? coefficient(uts,0) =>
            tanx := cTan monomial(1,1)
            iCompose(tanx,uts)
          error concat("tan: ",ZERO)

        cot uts ==
          zero? uts => error "cot: cot(0) is undefined"
          zero? coefficient(uts,0) => error concat("cot: ",NPOWERS)
          error concat("cot: ",ZERO)

        sec uts ==
          zero? coefficient(uts,0) =>
            secx := cSec monomial(1,1)
            iCompose(secx,uts)
          error concat("sec: ",ZERO)

        csc uts ==
          zero? uts => error "csc: csc(0) is undefined"
          zero? coefficient(uts,0) => error concat("csc: ",NPOWERS)
          error concat("csc: ",ZERO)

        asin uts ==
          zero? coefficient(uts,0) =>
            asinx := cAsin monomial(1,1)
            iCompose(asinx,uts)
          error concat("asin: ",ZERO)

        atan uts ==
          zero? coefficient(uts,0) =>
            atanx := cAtan monomial(1,1)
            iCompose(atanx,uts)
          error concat("atan: ",ZERO)

        acos z == error "acos: acos undefined on this coefficient domain"

        acot z == error "acot: acot undefined on this coefficient domain"

        asec z == error "asec: asec undefined on this coefficient domain"

        acsc z == error "acsc: acsc undefined on this coefficient domain"

        sinh uts ==
          zero? coefficient(uts,0) =>
            sinhx := cSinh monomial(1,1)
            iCompose(sinhx,uts)
          error concat("sinh: ",ZERO)

        cosh uts ==
          zero? coefficient(uts,0) =>
            coshx := cCosh monomial(1,1)
            iCompose(coshx,uts)
          error concat("cosh: ",ZERO)

        tanh uts ==
          zero? coefficient(uts,0) =>
            tanhx := cTanh monomial(1,1)
            iCompose(tanhx,uts)
          error concat("tanh: ",ZERO)

        coth uts ==
          zero? uts => error "coth: coth(0) is undefined"
          zero? coefficient(uts,0) => error concat("coth: ",NPOWERS)
          error concat("coth: ",ZERO)

        sech uts ==
          zero? coefficient(uts,0) =>
            sechx := cSech monomial(1,1)
            iCompose(sechx,uts)
          error concat("sech: ",ZERO)

        csch uts ==
          zero? uts => error "csch: csch(0) is undefined"
          zero? coefficient(uts,0) => error concat("csch: ",NPOWERS)
          error concat("csch: ",ZERO)

        asinh uts ==
          zero? coefficient(uts,0) =>
            asinhx := cAsinh monomial(1,1)
            iCompose(asinhx,uts)
          error concat("asinh: ",ZERO)

        atanh uts ==
          zero? coefficient(uts,0) =>
            atanhx := cAtanh monomial(1,1)
            iCompose(atanhx,uts)
          error concat("atanh: ",ZERO)

        acosh uts == error "acosh: acosh undefined on this coefficient domain"

        acoth uts == error "acoth: acoth undefined on this coefficient domain"

        asech uts == error "asech: asech undefined on this coefficient domain"

        acsch uts == error "acsch: acsch undefined on this coefficient domain"

    if Coef has Field then
      if Coef has Algebra Fraction Integer then

        (uts:%) ** (r:Coef) ==
          not (coefficient(uts,1) = 1) =>
            error "**: constant coefficient should be 1"
          cPower(uts,r)

--% OutputForms

    coerce(x:%): OUT ==
      count : NNI := _$streamCount$Lisp
      extend(x,count)
      seriesToOutputForm(getStream x,getRef x,variable x,center x,1)