This file is indexed.

/usr/share/axiom-20170501/src/algebra/SYSSOLP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
)abbrev package SYSSOLP SystemSolvePackage
++ Author: P. Gianni
++ Date Created: summer 1988
++ Date Last Updated: summer 1990
++ Description:
++ Symbolic solver for systems of rational functions with coefficients
++ in an integral domain R.
++ The systems are solved in the field of rational functions over R.
++ Solutions are exact of the form variable = value when the value is
++ a member of the coefficient domain R. Otherwise the solutions
++ are implicitly expressed as roots of univariate polynomial equations over R.
++ Care is taken to guarantee that the denominators of the input
++ equations do not vanish on the solution sets.
++ The arguments to solve can either be given as equations or
++ as rational functions interpreted as equal
++ to zero. The user can specify an explicit list of symbols to
++ be solved for, treating all other symbols appearing as parameters
++ or omit the list of symbols in which case the system tries to
++ solve with respect to all symbols appearing in the input.

SystemSolvePackage(R) : SIG == CODE where
  R : IntegralDomain

  NNI ==> NonNegativeInteger
  P   ==> Polynomial
  EQ  ==> Equation
  L   ==> List
  V   ==> Vector
  M   ==> Matrix
  UP  ==> SparseUnivariatePolynomial
  SE  ==> Symbol
  IE  ==> IndexedExponents Symbol
  SUP ==> SparseUnivariatePolynomial
  F   ==> Fraction Polynomial R
  PP2 ==> PolynomialFunctions2(R,F)
  PPR ==> Polynomial Polynomial R

  SIG ==> with

    solve : (L F, L SE) -> L L EQ F
      ++ solve(lp,lv) finds the solutions of the list lp of
      ++ rational functions with respect to the list of symbols lv.

    solve : (L EQ F, L SE) -> L L EQ F
      ++ solve(le,lv) finds the solutions of the
      ++ list le of equations of rational functions
      ++ with respect to the list of symbols lv.

    solve : L F -> L L EQ F
      ++ solve(lp) finds the solutions of the list lp of rational
      ++ functions with respect to all symbols appearing in lp.

    solve : L EQ F -> L L EQ F
      ++ solve(le) finds the solutions of the list le of equations of
      ++ rational functions with respect to all symbols appearing in le.

    solve : (F, SE) -> L EQ F
      ++ solve(p,v) solves the equation p=0, where p is a rational function
      ++ with respect to the variable v.

    solve : (EQ F,SE) -> L EQ F
      ++ solve(eq,v) finds the solutions of the equation
      ++ eq with respect to the variable v.

    solve : F -> L EQ F
      ++ solve(p) finds the solution of a rational function p = 0
      ++ with respect to the unique variable appearing in p.

    solve : EQ F -> L EQ F
      ++ solve(eq) finds the solutions of the equation eq
      ++ with respect to the unique variable appearing in eq.

    triangularSystems : (L F,    L SE) -> L L P R
      ++ triangularSystems(lf,lv) solves the system of equations
      ++ defined by lf with respect to the list of symbols lv;
      ++ the system of equations is obtaining
      ++ by equating to zero the list of rational functions lf.
      ++ The output is a list of solutions where
      ++ each solution is expressed as a "reduced" triangular system of
      ++ polynomials.

  CODE ==> add

       import MPolyCatRationalFunctionFactorizer(IE,SE,R,P F)

                     ---- Local Functions ----
       linSolve: (L F,    L SE) -> Union(L EQ F, "failed")
       makePolys :   L EQ F     ->  L F

       makeR2F(r : R) : F == r :: (P R) :: F

       makeP2F(p:P F):F ==
         lv:=variables p
         lv = [] => retract p
         for v in lv repeat p:=pushdown(p,v)
         retract p
                     ---- Local Functions ----
       makeEq(p:P F,lv:L SE): EQ F ==
         z:=last lv
         np:=numer makeP2F p
         lx:=variables np
         for x in lv repeat if member?(x,lx) then leave x
         up:=univariate(np,x)
         (degree up)=1 =>
           equation(x::P(R)::F,-coefficient(up,0)/leadingCoefficient up)
         equation(np::F,0$F)

       varInF(v: SE): F == v::P(R) :: F

       newInF(n: Integer):F==varInF new()$SE

       testDegree(f :P R , lv :L SE) : Boolean ==
         "or"/[degree(f,vv)>0 for vv in lv]
                    ---- Exported Functions ----

       -- solve a system of rational functions
       triangularSystems(lf: L F,lv:L SE) : L L P R ==
           empty? lv => empty()
           empty? lf => empty()
           #lf = 1 =>
              p:= numer(first lf)
              fp:=(factor p)$GeneralizedMultivariateFactorize(SE,IE,R,R,P R)
              [[ff.factor] for ff in factors fp | testDegree(ff.factor,lv)]
           dmp:=DistributedMultivariatePolynomial(lv,P R)
           OV:=OrderedVariableList(lv)
           DP:=DirectProduct(#lv, NonNegativeInteger)
           push:=PushVariables(R,DP,OV,dmp)
           lq : L dmp
           lvv:L OV:=[variable(vv)::OV for vv in lv]
           lq:=[pushup(df::dmp,lvv)$push for f in lf|(df:=denom f)^=1]
           lp:=[pushup(numer(f)::dmp,lvv)$push for f in lf]
           parRes:=groebSolve(lp,lvv)$GroebnerSolve(lv,P R,R)
           if lq^=[] then
             gb:=GroebnerInternalPackage(P R,DirectProduct(#lv,NNI),OV,dmp)
             parRes:=[pr for pr in parRes|
                       and/[(redPol(fq,pr pretend List(dmp))$gb) ^=0
                         for fq in lq]]
           [[retract pushdown(pf,lvv)$push for pf in pr] for pr in parRes]

      -- One polynomial. Implicit variable --
       solve(pol : F) ==
         zero? pol =>
            error "equation is always satisfied"
         lv:=removeDuplicates
             concat(variables numer pol, variables denom pol)
         empty? lv => error "inconsistent equation"
         #lv>1 => error "too many variables"
         solve(pol,first lv)

       -- general solver. Input in equation style. Implicit variables --
       solve(eq : EQ F) ==
         pol:= lhs eq - rhs eq
         zero? pol =>
            error "equation is always satisfied"
         lv:=removeDuplicates
             concat(variables numer pol, variables denom pol)
         empty? lv => error "inconsistent equation"
         #lv>1 => error "too many variables"
         solve(pol,first lv)

       -- general solver. Input in equation style  --
       solve(eq:EQ F,var:SE)  == solve(lhs eq - rhs eq,var)

       -- general solver. Input in polynomial style  --
       solve(pol:F,var:SE) ==
         if R has GcdDomain then
           p:=primitivePart(numer pol,var)
           fp:=(factor p)$GeneralizedMultivariateFactorize(SE,IE,R,R,P R)
           [makeEq(map(makeR2F,ff.factor)$PP2,[var]) for ff in factors fp]
         else empty()

       -- Convert a list of Equations in a list of Polynomials
       makePolys(l: L EQ F):L F == [lhs e - rhs e for e in l]

       -- linear systems solver. Input as list of polynomials  --
       linSolve(lp:L F,lv:L SE) ==
           rec:Record(particular:Union(V F,"failed"),basis:L V F)
           lr : L P R:=[numer f for f in lp]
           rec:=linSolve(lr,lv)$LinearSystemPolynomialPackage(R,IE,SE,P R)
           rec.particular case "failed" => "failed"
           rhs := rec.particular :: V F
           zeron:V F:=zero(#lv)
           for p in rec.basis | p ^= zeron repeat
               sym := newInF(1)
               for i in 1..#lv repeat
                   rhs.i := rhs.i + sym*p.i
           eqs: L EQ F := []
           for i in 1..#lv repeat
             eqs := append(eqs,[(lv.i)::(P R)::F = rhs.i])
           eqs

      -- general solver. Input in polynomial style. Implicit variables --
       solve(lr : L F) ==
         lv :="setUnion"/[setUnion(variables numer p, variables denom p)
               for p in lr]
         solve(lr,lv)

       -- general solver. Input in equation style. Implicit variables --
       solve(le : L EQ F) ==
         lr:=makePolys le
         lv :="setUnion"/[setUnion(variables numer p, variables denom p)
               for p in lr]
         solve(lr,lv)

       -- general solver. Input in equation style  --
       solve(le:L EQ F,lv:L SE)  == solve(makePolys le, lv)

       checkLinear(lr:L F,vl:L SE):Boolean ==
         ld:=[denom pol for pol in lr]
         for f in ld repeat
           if (or/[member?(x,vl) for x in variables f]) then return false
         and/[totalDegree(numer pol,vl) < 2 for pol in lr]

       -- general solver. Input in polynomial style  --
       solve(lr:L F,vl:L SE) ==
           empty? vl => empty()
           checkLinear(lr,vl) =>
                            -- linear system --
               soln := linSolve(lr, vl)
               soln case "failed" => []
               eqns: L EQ F := []
               for i in 1..#vl repeat
                   lhs := (vl.i::(P R))::F
                   rhs :=  rhs soln.i
                   eqns := append(eqns, [lhs = rhs])
               [eqns]
                         -- polynomial system --
           if R has GcdDomain then
             parRes:=triangularSystems(lr,vl)
             [[makeEq(map(makeR2F,f)$PP2,vl) for f in pr] for pr in parRes]
           else [[]]