/usr/share/axiom-20170501/src/algebra/TREE.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | )abbrev domain TREE Tree
++ Author:W. H. Burge
++ Date Created:17 Feb 1992
++ Description:
++ \spadtype{Tree(S)} is a basic domains of tree structures.
++ Each tree is either empty or else is a node consisting of a value and
++ a list of (sub)trees.
Tree(S) : SIG == CODE where
S : SetCategory
SIG ==> RecursiveAggregate(S) with
finiteAggregate
shallowlyMutable
tree : (S,List %) -> %
++ tree(nd,ls) creates a tree with value nd, and children ls.
++
++X t1:=tree [1,2,3,4]
++X tree(5,[t1])
tree : List S -> %
++ tree(ls) creates a tree from a list of elements of s.
++
++X tree [1,2,3,4]
tree : S -> %
++ tree(nd) creates a tree with value nd, and no children
++
++X tree 6
cyclic? : % -> Boolean
++ cyclic?(t) tests if t is a cyclic tree.
++
++X t1:=tree [1,2,3,4]
++X cyclic? t1
cyclicCopy : % -> %
++ cyclicCopy(l) makes a copy of a (possibly) cyclic tree l.
++
++X t1:=tree [1,2,3,4]
++X cyclicCopy t1
cyclicEntries : % -> List %
++ cyclicEntries(t) returns a list of top-level cycles in tree t.
++
++X t1:=tree [1,2,3,4]
++X cyclicEntries t1
cyclicEqual? : (%, %) -> Boolean
++ cyclicEqual?(t1, t2) tests of two cyclic trees have
++ the same structure.
++
++X t1:=tree [1,2,3,4]
++X t2:=tree [1,2,3,4]
++X cyclicEqual?(t1,t2)
cyclicParents : % -> List %
++ cyclicParents(t) returns a list of cycles that are parents of t.
++
++X t1:=tree [1,2,3,4]
++X cyclicParents t1
CODE ==> add
cycleTreeMax ==> 5
Rep := Union(node:Record(value: S, args: List %),empty:"empty")
t:%
br:%
s: S
ls: List S
empty? t == t case empty
empty() == ["empty"]
children t ==
t case empty => error "cannot take the children of an empty tree"
(t.node.args)@List(%)
setchildren_!(t,lt) ==
t case empty => error "cannot set children of an empty tree"
(t.node.args:=lt;t pretend %)
setvalue_!(t,s) ==
t case empty => error "cannot set value of an empty tree"
(t.node.value:=s;s)
count(n, t) ==
t case empty => 0
i := +/[count(n, c) for c in children t]
value t = n => i + 1
i
count(fn: S -> Boolean, t: %): NonNegativeInteger ==
t case empty => 0
i := +/[count(fn, c) for c in children t]
fn value t => i + 1
i
map(fn, t) ==
t case empty => t
tree(fn value t,[map(fn, c) for c in children t])
map_!(fn, t) ==
t case empty => t
setvalue_!(t, fn value t)
for c in children t repeat map_!(fn, c)
tree(s,lt) == [[s,lt]]
tree(s) == [[s,[]]]
tree(ls) ==
empty? ls => empty()
tree(first ls, [tree s for s in rest ls])
value t ==
t case empty => error "cannot take the value of an empty tree"
t.node.value
child?(t1,t2) ==
empty? t2 => false
"or"/[t1 = t for t in children t2]
distance1(t1: %, t2: %): Integer ==
t1 = t2 => 0
t2 case empty => -1
u := [n for t in children t2 | (n := distance1(t1,t)) >= 0]
#u > 0 => 1 + "min"/u
-1
distance(t1,t2) ==
n := distance1(t1, t2)
n >= 0 => n
distance1(t2, t1)
node?(t1, t2) ==
t1 = t2 => true
t case empty => false
"or"/[node?(t1, t) for t in children t2]
leaf? t ==
t case empty => false
empty? children t
leaves t ==
t case empty => empty()
leaf? t => [value t]
"append"/[leaves c for c in children t]
less? (t, n) == # t < n
more?(t, n) == # t > n
nodes t == ---buggy
t case empty => empty()
nl := [nodes c for c in children t]
nl = empty() => [t]
cons(t,"append"/nl)
size? (t, n) == # t = n
any?(fn, t) == ---bug fixed
t case empty => false
fn value t or "or"/[any?(fn, c) for c in children t]
every?(fn, t) ==
t case empty => true
fn value t and "and"/[every?(fn, c) for c in children t]
member?(n, t) ==
t case empty => false
n = value t or "or"/[member?(n, c) for c in children t]
members t == parts t
parts t == --buggy?
t case empty => empty()
u := [parts c for c in children t]
u = empty() => [value t]
cons(value t,"append"/u)
---Functions that guard against cycles: =, #, copy-------------
-----> =
equal?: (%, %, %, %, Integer) -> Boolean
t1 = t2 == equal?(t1, t2, t1, t2, 0)
equal?(t1, t2, ot1, ot2, k) ==
k = cycleTreeMax and (cyclic? ot1 or cyclic? ot2) =>
error "use cyclicEqual? to test equality on cyclic trees"
t1 case empty => t2 case empty
t2 case empty => false
value t1 = value t2 and (c1 := children t1) = (c2 := children t2) and
"and"/[equal?(x,y,ot1, ot2,k + 1) for x in c1 for y in c2]
-----> #
treeCount: (%, %, NonNegativeInteger) -> NonNegativeInteger
# t == treeCount(t, t, 0)
treeCount(t, origTree, k) ==
k = cycleTreeMax and cyclic? origTree =>
error "# is not defined on cyclic trees"
t case empty => 0
1 + +/[treeCount(c, origTree, k + 1) for c in children t]
-----> copy
copy1: (%, %, Integer) -> %
copy t == copy1(t, t, 0)
copy1(t, origTree, k) ==
k = cycleTreeMax and cyclic? origTree =>
error "use cyclicCopy to copy a cyclic tree"
t case empty => t
empty? children t => tree value t
tree(value t, [copy1(x, origTree, k + 1) for x in children t])
-----------Functions that allow cycles---------------
--local utility functions:
eqUnion: (List %, List %) -> List %
eqMember?: (%, List %) -> Boolean
eqMemberIndex: (%, List %, Integer) -> Integer
lastNode: List % -> List %
insert: (%, List %) -> List %
-----> coerce to OutputForm
if S has SetCategory then
multipleOverbar: (OutputForm, Integer, List %) -> OutputForm
coerce1: (%, List %, List %) -> OutputForm
coerce(t:%): OutputForm == coerce1(t, empty()$(List %), cyclicParents t)
coerce1(t,parents, pl) ==
t case empty => empty()@List(S)::OutputForm
eqMember?(t, parents) =>
multipleOverbar((".")::OutputForm,eqMemberIndex(t, pl,0),pl)
empty? children t => value t::OutputForm
nodeForm := (value t)::OutputForm
if (k := eqMemberIndex(t, pl, 0)) > 0 then
nodeForm := multipleOverbar(nodeForm, k, pl)
prefix(nodeForm,
[coerce1(br,cons(t,parents),pl) for br in children t])
multipleOverbar(x, k, pl) ==
k < 1 => x
#pl = 1 => overbar x
s : String := "abcdefghijklmnopqrstuvwxyz"
c := s.(1 + ((k - 1) rem 26))
overlabel(c::OutputForm, x)
-----> cyclic?
cyclic2?: (%, List %) -> Boolean
cyclic? t == cyclic2?(t, empty()$(List %))
cyclic2?(x,parents) ==
empty? x => false
eqMember?(x, parents) => true
for y in children x repeat
cyclic2?(y,cons(x, parents)) => return true
false
-----> cyclicCopy
cyclicCopy2: (%, List %) -> %
copyCycle2: (%, List %) -> %
copyCycle4: (%, %, %, List %) -> %
cyclicCopy(t) == cyclicCopy2(t, cyclicEntries t)
cyclicCopy2(t, cycles) ==
eqMember?(t, cycles) => return copyCycle2(t, cycles)
tree(value t, [cyclicCopy2(c, cycles) for c in children t])
copyCycle2(cycle, cycleList) ==
newCycle := tree(value cycle, nil)
setchildren!(newCycle,
[copyCycle4(c,cycle,newCycle, cycleList) for c in children cycle])
newCycle
copyCycle4(t, cycle, newCycle, cycleList) ==
empty? cycle => empty()
eq?(t, cycle) => newCycle
eqMember?(t, cycleList) => copyCycle2(t, cycleList)
tree(value t,
[copyCycle4(c, cycle, newCycle, cycleList) for c in children t])
-----> cyclicEntries
cyclicEntries3: (%, List %, List %) -> List %
cyclicEntries(t) == cyclicEntries3(t, empty()$(List %), empty()$(List %))
cyclicEntries3(t, parents, cl) ==
empty? t => cl
eqMember?(t, parents) => insert(t, cl)
parents := cons(t, parents)
for y in children t repeat
cl := cyclicEntries3(t, parents, cl)
cl
-----> cyclicEqual?
cyclicEqual4?: (%, %, List %, List %) -> Boolean
cyclicEqual?(t1, t2) ==
cp1 := cyclicParents t1
cp2 := cyclicParents t2
#cp1 ^= #cp2 or null cp1 => t1 = t2
cyclicEqual4?(t1, t2, cp1, cp2)
cyclicEqual4?(t1, t2, cp1, cp2) ==
t1 case empty => t2 case empty
t2 case empty => false
0 ^= (k := eqMemberIndex(t1, cp1, 0)) => eq?(t2, cp2 . k)
value t1 = value t2 and
"and"/[cyclicEqual4?(x,y,cp1,cp2)
for x in children t1 for y in children t2]
-----> cyclicParents t
cyclicParents3: (%, List %, List %) -> List %
cyclicParents t == cyclicParents3(t, empty()$(List %), empty()$(List %))
cyclicParents3(x, parents, pl) ==
empty? x => pl
eqMember?(x, parents) =>
cycleMembers := [y for y in parents while not eq?(x,y)]
eqUnion(cons(x, cycleMembers), pl)
parents := cons(x, parents)
for y in children x repeat
pl := cyclicParents3(y, parents, pl)
pl
insert(x, l) ==
eqMember?(x, l) => l
cons(x, l)
lastNode l ==
empty? l => error "empty tree has no last node"
while not empty? rest l repeat l := rest l
l
eqMember?(y,l) ==
for x in l repeat eq?(x,y) => return true
false
eqMemberIndex(x, l, k) ==
null l => k
k := k + 1
eq?(x, first l) => k
eqMemberIndex(x, rest l, k)
eqUnion(u, v) ==
null u => v
x := first u
newV :=
eqMember?(x, v) => v
cons(x, v)
eqUnion(rest u, newV)
|