This file is indexed.

/usr/share/axiom-20170501/src/algebra/TRIGMNIP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
)abbrev package TRIGMNIP TrigonometricManipulations
++ Author: Manuel Bronstein
++ Date Created: 4 April 1988
++ Date Last Updated: 14 February 1994
++ Description:
++ \spadtype{TrigonometricManipulations} provides transformations from
++ trigonometric functions to complex exponentials and logarithms, and back.

TrigonometricManipulations(R, F) : SIG == CODE where
  R : Join(GcdDomain, OrderedSet, RetractableTo Integer,
           LinearlyExplicitRingOver Integer)
  F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
           FunctionSpace R)

  Z   ==> Integer
  SY  ==> Symbol
  K   ==> Kernel F
  FG  ==> Expression Complex R

  SIG ==> with

    complexNormalize : F -> F
      ++ complexNormalize(f) rewrites \spad{f} using the least possible number
      ++ of complex independent kernels.

    complexNormalize : (F, SY) -> F
      ++ complexNormalize(f, x) rewrites \spad{f} using the least possible
      ++ number of complex independent kernels involving \spad{x}.

    complexElementary : F -> F
      ++ complexElementary(f) rewrites \spad{f} in terms of the 2 fundamental
      ++ complex transcendental elementary functions: \spad{log, exp}.

    complexElementary : (F, SY) -> F
      ++ complexElementary(f, x) rewrites the kernels of \spad{f} involving
      ++ \spad{x} in terms of the 2 fundamental complex
      ++ transcendental elementary functions: \spad{log, exp}.

    trigs : F -> F
      ++ trigs(f) rewrites all the complex logs and exponentials
      ++ appearing in \spad{f} in terms of trigonometric functions.

    real : F -> F
      ++ real(f) returns the real part of \spad{f} where \spad{f} is a complex
      ++ function.

    imag : F -> F
      ++ imag(f) returns the imaginary part of \spad{f} where \spad{f}
      ++ is a complex function.

    real? : F -> Boolean
      ++ real?(f) returns \spad{true} if \spad{f = real f}.

    complexForm : F -> Complex F
      ++ complexForm(f) returns \spad{[real f, imag f]}.

  CODE ==> add

    import ElementaryFunctionSign(R, F)
    import InnerTrigonometricManipulations(R,F,FG)
    import ElementaryFunctionStructurePackage(R, F)
    import ElementaryFunctionStructurePackage(Complex R, FG)

    s1  := sqrt(-1::F)
    ipi := pi()$F * s1

    K2KG          : K -> Kernel FG
    kcomplex      : K -> Union(F, "failed")
    locexplogs    : F -> FG
    localexplogs  : (F, F, List SY) -> FG
    complexKernels: F -> Record(ker: List K, val: List F)

    K2KG k           == retract(tan F2FG first argument k)@Kernel(FG)
    real? f          == empty?(complexKernels(f).ker)
    real f           == real complexForm f
    imag f           == imag complexForm f

-- returns [[k1,...,kn], [v1,...,vn]] such that ki should be replaced by vi
    complexKernels f ==
      lk:List(K) := empty()
      lv:List(F) := empty()
      for k in tower f repeat
        if (u := kcomplex k) case F then
           lk := concat(k, lk)
           lv := concat(u::F, lv)
      [lk, lv]

-- returns f if it is certain that k is not a real kernel and k = f,
-- "failed" otherwise
    kcomplex k ==
      op := operator k
      is?(k, "nthRoot"::SY) =>
        arg := argument k
        even?(retract(n := second arg)@Z) and ((u := sign(first arg)) case Z)
          and (u::Z < 0) => op(s1, n / 2::F) * op(- first arg, n)
        "failed"
      is?(k, "log"::SY) and ((u := sign(a := first argument k)) case Z)
          and (u::Z < 0) => op(- a) + ipi
      "failed"

    complexForm f ==
      empty?((l := complexKernels f).ker) => complex(f, 0)
      explogs2trigs locexplogs eval(f, l.ker, l.val)

    locexplogs f ==
      any?(x +-> has?(x, "rtrig"),
           operators(g := realElementary f))$List(BasicOperator) =>
              localexplogs(f, g, variables g)
      F2FG g

    complexNormalize(f, x) ==
      any?(y +-> has?(operator y, "rtrig"),
       [k for k in tower(g := realElementary(f, x))
               | member?(x, variables(k::F))]$List(K))$List(K) =>
                   FG2F(rischNormalize(localexplogs(f, g, [x]), x).func)
      rischNormalize(g, x).func

    complexNormalize f ==
      l := variables(g := realElementary f)
      any?(x +-> has?(x, "rtrig"), operators g)$List(BasicOperator) =>
        h := localexplogs(f, g, l)
        for x in l repeat h := rischNormalize(h, x).func
        FG2F h
      for x in l repeat g := rischNormalize(g, x).func
      g

    complexElementary(f, x) ==
      any?(y +-> has?(operator y, "rtrig"),
       [k for k in tower(g := realElementary(f, x))
                 | member?(x, variables(k::F))]$List(K))$List(K) =>
                     FG2F localexplogs(f, g, [x])
      g

    complexElementary f ==
      any?(x +-> has?(x, "rtrig"),
        operators(g := realElementary f))$List(BasicOperator) =>
          FG2F localexplogs(f, g, variables g)
      g

    localexplogs(f, g, lx) ==
      trigs2explogs(F2FG g, [K2KG k for k in tower f
                          | is?(k, "tan"::SY) or is?(k, "cot"::SY)], lx)

    trigs f ==
      real? f => f
      g := explogs2trigs F2FG f
      real g + s1 * imag g