/usr/share/axiom-20170501/src/algebra/TRMANIP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 | )abbrev package TRMANIP TranscendentalManipulations
++ Author: Bob Sutor, Manuel Bronstein
++ Date Created: Way back
++ Date Last Updated: 22 January 1996, added simplifyLog MCD.
++ Description:
++ TranscendentalManipulations provides functions to simplify and
++ expand expressions involving transcendental operators.
TranscendentalManipulations(R, F) : SIG == CODE where
R : Join(OrderedSet, GcdDomain)
F : Join(FunctionSpace R, TranscendentalFunctionCategory)
Z ==> Integer
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
UP ==> SparseUnivariatePolynomial P
POWER ==> "%power"::Symbol
POW ==> Record(val: F,exponent: Z)
PRODUCT ==> Record(coef : Z, var : K)
FPR ==> Fraction Polynomial R
SIG ==> with
expand : F -> F
++ expand(f) performs the following expansions on f:\begin{items}
++ \item 1. logs of products are expanded into sums of logs,
++ \item 2. trigonometric and hyperbolic trigonometric functions
++ of sums are expanded into sums of products of trigonometric
++ and hyperbolic trigonometric functions.
++ \item 3. formal powers of the form \spad{(a/b)**c} are expanded into
++ \spad{a**c * b**(-c)}.
++ \end{items}
simplify : F -> F
++ simplify(f) performs the following simplifications on f:\begin{items}
++ \item 1. rewrites trigs and hyperbolic trigs in terms
++ of \spad{sin} ,\spad{cos}, \spad{sinh}, \spad{cosh}.
++ \item 2. rewrites \spad{sin**2} and \spad{sinh**2} in terms
++ of \spad{cos} and \spad{cosh},
++ \item 3. rewrites \spad{exp(a)*exp(b)} as \spad{exp(a+b)}.
++ \item 4. rewrites \spad{(a**(1/n))**m * (a**(1/s))**t} as a single
++ power of a single radical of \spad{a}.
++ \end{items}
htrigs : F -> F
++ htrigs(f) converts all the exponentials in f into
++ hyperbolic sines and cosines.
simplifyExp : F -> F
++ simplifyExp(f) converts every product \spad{exp(a)*exp(b)}
++ appearing in f into \spad{exp(a+b)}.
simplifyLog : F -> F
++ simplifyLog(f) converts every \spad{log(a) - log(b)} appearing in f
++ into \spad{log(a/b)}, every \spad{log(a) + log(b)} into \spad{log(a*b)}
++ and every \spad{n*log(a)} into \spad{log(a^n)}.
expandPower : F -> F
++ expandPower(f) converts every power \spad{(a/b)**c} appearing
++ in f into \spad{a**c * b**(-c)}.
expandLog : F -> F
++ expandLog(f) converts every \spad{log(a/b)} appearing in f into
++ \spad{log(a) - log(b)}, and every \spad{log(a*b)} into
++ \spad{log(a) + log(b)}..
cos2sec : F -> F
++ cos2sec(f) converts every \spad{cos(u)} appearing in f into
++ \spad{1/sec(u)}.
cosh2sech : F -> F
++ cosh2sech(f) converts every \spad{cosh(u)} appearing in f into
++ \spad{1/sech(u)}.
cot2trig : F -> F
++ cot2trig(f) converts every \spad{cot(u)} appearing in f into
++ \spad{cos(u)/sin(u)}.
coth2trigh : F -> F
++ coth2trigh(f) converts every \spad{coth(u)} appearing in f into
++ \spad{cosh(u)/sinh(u)}.
csc2sin : F -> F
++ csc2sin(f) converts every \spad{csc(u)} appearing in f into
++ \spad{1/sin(u)}.
csch2sinh : F -> F
++ csch2sinh(f) converts every \spad{csch(u)} appearing in f into
++ \spad{1/sinh(u)}.
sec2cos : F -> F
++ sec2cos(f) converts every \spad{sec(u)} appearing in f into
++ \spad{1/cos(u)}.
sech2cosh : F -> F
++ sech2cosh(f) converts every \spad{sech(u)} appearing in f into
++ \spad{1/cosh(u)}.
sin2csc : F -> F
++ sin2csc(f) converts every \spad{sin(u)} appearing in f into
++ \spad{1/csc(u)}.
sinh2csch : F -> F
++ sinh2csch(f) converts every \spad{sinh(u)} appearing in f into
++ \spad{1/csch(u)}.
tan2trig : F -> F
++ tan2trig(f) converts every \spad{tan(u)} appearing in f into
++ \spad{sin(u)/cos(u)}.
tanh2trigh : F -> F
++ tanh2trigh(f) converts every \spad{tanh(u)} appearing in f into
++ \spad{sinh(u)/cosh(u)}.
tan2cot : F -> F
++ tan2cot(f) converts every \spad{tan(u)} appearing in f into
++ \spad{1/cot(u)}.
tanh2coth : F -> F
++ tanh2coth(f) converts every \spad{tanh(u)} appearing in f into
++ \spad{1/coth(u)}.
cot2tan : F -> F
++ cot2tan(f) converts every \spad{cot(u)} appearing in f into
++ \spad{1/tan(u)}.
coth2tanh : F -> F
++ coth2tanh(f) converts every \spad{coth(u)} appearing in f into
++ \spad{1/tanh(u)}.
removeCosSq : F -> F
++ removeCosSq(f) converts every \spad{cos(u)**2} appearing in f into
++ \spad{1 - sin(x)**2}, and also reduces higher
++ powers of \spad{cos(u)} with that formula.
removeSinSq : F -> F
++ removeSinSq(f) converts every \spad{sin(u)**2} appearing in f into
++ \spad{1 - cos(x)**2}, and also reduces higher powers of
++ \spad{sin(u)} with that formula.
removeCoshSq : F -> F
++ removeCoshSq(f) converts every \spad{cosh(u)**2} appearing in f into
++ \spad{1 - sinh(x)**2}, and also reduces higher powers of
++ \spad{cosh(u)} with that formula.
removeSinhSq : F -> F
++ removeSinhSq(f) converts every \spad{sinh(u)**2} appearing in f into
++ \spad{1 - cosh(x)**2}, and also reduces higher powers
++ of \spad{sinh(u)} with that formula.
if R has PatternMatchable(R) and R has ConvertibleTo(Pattern(R))
and F has ConvertibleTo(Pattern(R)) and F has PatternMatchable R then
expandTrigProducts : F -> F
++ expandTrigProducts(e) replaces \axiom{sin(x)*sin(y)} by
++ \spad{(cos(x-y)-cos(x+y))/2}, \axiom{cos(x)*cos(y)} by
++ \spad{(cos(x-y)+cos(x+y))/2}, and \axiom{sin(x)*cos(y)} by
++ \spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses
++ the pattern matcher and so is relatively expensive. To avoid
++ getting into an infinite loop the transformations are applied
++ at most ten times.
CODE ==> add
import FactoredFunctions(P)
import PolynomialCategoryLifting(IndexedExponents K, K, R, P, F)
import
PolynomialCategoryQuotientFunctions(IndexedExponents K,K,R,P,F)
smpexp : P -> F
termexp : P -> F
exlog : P -> F
smplog : P -> F
smpexpand : P -> F
smp2htrigs: P -> F
kerexpand : K -> F
expandpow : K -> F
logexpand : K -> F
sup2htrigs: (UP, F) -> F
supexp : (UP, F, F, Z) -> F
ueval : (F, String, F -> F) -> F
ueval2 : (F, String, F -> F) -> F
powersimp : (P, List K) -> F
t2t : F -> F
c2t : F -> F
c2s : F -> F
s2c : F -> F
s2c2 : F -> F
th2th : F -> F
ch2th : F -> F
ch2sh : F -> F
sh2ch : F -> F
sh2ch2 : F -> F
simplify0 : F -> F
simplifyLog1 : F -> F
logArgs : List F -> F
import F
import List F
if R has PatternMatchable R and R has ConvertibleTo Pattern R
and F has ConvertibleTo(Pattern(R)) and F has PatternMatchable R then
XX : F := coerce new()$Symbol
YY : F := coerce new()$Symbol
sinCosRule : RewriteRule(R,R,F) :=
rule(cos(XX)*sin(YY),(sin(XX+YY)-sin(XX-YY))/2::F)
sinSinRule : RewriteRule(R,R,F) :=
rule(sin(XX)*sin(YY),(cos(XX-YY)-cos(XX+YY))/2::F)
cosCosRule : RewriteRule(R,R,F) :=
rule(cos(XX)*cos(YY),(cos(XX-YY)+cos(XX+YY))/2::F)
sinhSum : RewriteRule(R,R,F) :=
rule(sinh(XX+YY),(sinh(XX)*cosh(YY)+cosh(XX)*sinh(YY))::F)
coshSum : RewriteRule(R,R,F) :=
rule(cosh(XX+YY),(cosh(XX)*cosh(YY)+sinh(XX)*sinh(YY))::F)
tanhSum : RewriteRule(R,R,F) :=
rule(tanh(XX+YY),((tanh(XX)+tanh(YY))/(1+tanh(XX)*tanh(YY)))::F)
cothSum : RewriteRule(R,R,F) :=
rule(coth(XX+YY),((coth(XX)*coth(YY)+1)/(coth(YY)+coth(XX)))::F)
sinhpsinh : RewriteRule(R,R,F) :=
rule(sinh(XX)+sinh(YY),(2*sinh(1/2*(XX+YY))*cosh(1/2*(XX-YY)))::F)
sinhmsinh : RewriteRule(R,R,F) :=
rule(sinh(XX)-sinh(YY),(2*cosh(1/2*(XX+YY))*sinh(1/2*(XX-YY)))::F)
coshpcosh : RewriteRule(R,R,F) :=
rule(cosh(XX)+cosh(YY),(2*cosh(1/2*(XX+YY))*cosh(1/2*(XX-YY)))::F)
coshmcosh : RewriteRule(R,R,F) :=
rule(cosh(XX)-cosh(YY),(2*sinh(1/2*(XX+YY))*sinh(1/2*(XX-YY)))::F)
expandTrigProducts(e:F):F ==
applyRules([sinCosRule,sinSinRule,cosCosRule,
sinhSum,coshSum,tanhSum,cothSum,
sinhpsinh,sinhmsinh,coshpcosh,
coshmcosh],e,10)$ApplyRules(R,R,F)
logArgs(l:List F):F ==
-- This function will take a list of Expressions (implicitly a sum) and
-- add them up, combining log terms. It also replaces n*log(x) by
-- log(x^n).
import K
sum : F := 0
arg : F := 1
for term in l repeat
is?(term,"log"::Symbol) =>
arg := arg * simplifyLog(first(argument(first(kernels(term)))))
-- Now look for multiples, including negative ones.
prod : Union(PRODUCT, "failed") := isMult(term)
(prod case PRODUCT) and is?(prod.var,"log"::Symbol) =>
arg := arg * simplifyLog ((first argument(prod.var))**(prod.coef))
sum := sum+term
sum+log(arg)
simplifyLog(e:F):F ==
simplifyLog1(numerator e)/simplifyLog1(denominator e)
simplifyLog1(e:F):F ==
freeOf?(e,"log"::Symbol) => e
-- Check for n*log(u)
prod : Union(PRODUCT, "failed") := isMult(e)
(prod case PRODUCT) and is?(prod.var,"log"::Symbol) =>
log simplifyLog ((first argument(prod.var))**(prod.coef))
termList : Union(List(F),"failed") := isTimes(e)
-- I'm using two variables, termList and terms, to work round a
-- bug in the old compiler.
not (termList case "failed") =>
-- We want to simplify each log term in the product and then multiply
-- them together. However, if there is a constant or arithmetic
-- expression (something which looks like a Polynomial) we would
-- like to combine it with a log term.
terms :List F := [simplifyLog(term) for term in termList::List(F)]
exprs :List F := []
for i in 1..#terms repeat
if retractIfCan(terms.i)@Union(FPR,"failed") case FPR then
exprs := cons(terms.i,exprs)
terms := delete!(terms,i)
if not empty? exprs then
foundLog := false
i : NonNegativeInteger := 0
while (not(foundLog) and (i < #terms)) repeat
i := i+1
if is?(terms.i,"log"::Symbol) then
args : List F := argument(retract(terms.i)@K)
setelt(terms,i, log simplifyLog1(first(args)**( */exprs)))
foundLog := true
-- The next line deals with a situation which shouldn't occur,
-- since we have checked whether we are freeOf log already.
if not foundLog then terms := append(exprs,terms)
*/terms
terms : Union(List(F),"failed") := isPlus(e)
not (terms case "failed") => logArgs(terms)
expt : Union(POW, "failed") := isPower(e)
(expt case POW) and not (expt.exponent = 1) =>
simplifyLog(expt.val)**(expt.exponent)
kers : List K := kernels e
not(((#kers) = 1)) => e -- Have a constant
kernel(operator first kers,[simplifyLog(u) for u in argument first kers])
if R has RetractableTo Integer then
simplify x == rootProduct(simplify0 x)$AlgebraicManipulations(R,F)
else simplify x == simplify0 x
expandpow k ==
a := expandPower first(arg := argument k)
b := expandPower second arg
ne:F := (((numer a) = 1) => 1; numer(a)::F ** b)
de:F := (((denom a) = 1) => 1; denom(a)::F ** (-b))
ne * de
termexp p ==
exponent:F := 0
coef := (leadingCoefficient p)::P
lpow := select((z:K):Boolean+->is?(z,POWER)$K, lk := variables p)$List(K)
for k in lk repeat
d := degree(p, k)
if is?(k, "exp"::Symbol) then
exponent := exponent + d * first argument k
else if not is?(k, POWER) then
-- Expand arguments to functions as well ... MCD 23/1/97
--coef := coef * monomial(1, k, d)
coef := coef *
monomial(1,
kernel(operator k,
[simplifyExp u for u in argument k], height k), d)
coef::F * exp exponent * powersimp(p, lpow)
expandPower f ==
l := select((z:K):Boolean +-> is?(z, POWER)$K, kernels f)$List(K)
eval(f, l, [expandpow k for k in l])
-- l is a list of pure powers appearing as kernels in p
powersimp(p, l) ==
empty? l => 1
k := first l -- k = a**b
a := first(arg := argument k)
exponent := degree(p, k) * second arg
empty?(lk := select((z:K):Boolean +-> a = first argument z, rest l)) =>
(a ** exponent) * powersimp(p, rest l)
for k0 in lk repeat
exponent := exponent + degree(p, k0) * second argument k0
(a ** exponent) * powersimp(p, setDifference(rest l, lk))
t2t x == sin(x) / cos(x)
c2t x == cos(x) / sin(x)
c2s x == inv sin x
s2c x == inv cos x
s2c2 x == 1 - cos(x)**2
th2th x == sinh(x) / cosh(x)
ch2th x == cosh(x) / sinh(x)
ch2sh x == inv sinh x
sh2ch x == inv cosh x
sh2ch2 x == cosh(x)**2 - 1
ueval(x, s,f) == eval(x, s::Symbol, f)
ueval2(x,s,f) == eval(x, s::Symbol, 2, f)
cos2sec x == ueval(x, "cos", (z1:F):F +-> inv sec z1)
sin2csc x == ueval(x, "sin", (z1:F):F +-> inv csc z1)
csc2sin x == ueval(x, "csc", c2s)
sec2cos x == ueval(x, "sec", s2c)
tan2cot x == ueval(x, "tan", (z1:F):F +-> inv cot z1)
cot2tan x == ueval(x, "cot", (z1:F):F +-> inv tan z1)
tan2trig x == ueval(x, "tan", t2t)
cot2trig x == ueval(x, "cot", c2t)
cosh2sech x == ueval(x, "cosh", (z1:F):F +-> inv sech z1)
sinh2csch x == ueval(x, "sinh", (z1:F):F +-> inv csch z1)
csch2sinh x == ueval(x, "csch", ch2sh)
sech2cosh x == ueval(x, "sech", sh2ch)
tanh2coth x == ueval(x, "tanh", (z1:F):F +-> inv coth z1)
coth2tanh x == ueval(x, "coth", (z1:F):F +-> inv tanh z1)
tanh2trigh x == ueval(x, "tanh", th2th)
coth2trigh x == ueval(x, "coth", ch2th)
removeCosSq x == ueval2(x, "cos", (z1:F):F +-> 1 - (sin z1)**2)
removeSinSq x == ueval2(x, "sin", s2c2)
removeCoshSq x== ueval2(x, "cosh", (z1:F):F +-> 1 + (sinh z1)**2)
removeSinhSq x== ueval2(x, "sinh", sh2ch2)
expandLog x == smplog(numer x) / smplog(denom x)
simplifyExp x == (smpexp numer x) / (smpexp denom x)
expand x == (smpexpand numer x) / (smpexpand denom x)
smpexpand p == map(kerexpand, (r1:R):F +-> r1::F, p)
smplog p == map(logexpand, (r1:R):F +-> r1::F, p)
smp2htrigs p == map((k1:K):F +-> htrigs(k1::F), (r1:R):F +-> r1::F, p)
htrigs f ==
(m := mainKernel f) case "failed" => f
op := operator(k := m::K)
arg := [htrigs x for x in argument k]$List(F)
num := univariate(numer f, k)
den := univariate(denom f, k)
is?(op, "exp"::Symbol) =>
g1 := cosh(a := first arg) + sinh(a)
g2 := cosh(a) - sinh(a)
supexp(num,g1,g2,b:= (degree num)::Z quo 2)/supexp(den,g1,g2,b)
sup2htrigs(num, g1:= op arg) / sup2htrigs(den, g1)
supexp(p, f1, f2, bse) ==
ans:F := 0
while p ^= 0 repeat
g := htrigs(leadingCoefficient(p)::F)
if ((d := degree(p)::Z - bse) >= 0) then
ans := ans + g * f1 ** d
else ans := ans + g * f2 ** (-d)
p := reductum p
ans
sup2htrigs(p, f) ==
(map(smp2htrigs, p)$SparseUnivariatePolynomialFunctions2(P, F)) f
exlog p == +/[r.coef * log(r.logand::F) for r in log squareFree p]
logexpand k ==
nullary?(op := operator k) => k::F
is?(op, "log"::Symbol) =>
exlog(numer(x := expandLog first argument k)) - exlog denom x
op [expandLog x for x in argument k]$List(F)
kerexpand k ==
nullary?(op := operator k) => k::F
is?(op, POWER) => expandpow k
arg := first argument k
is?(op, "sec"::Symbol) => inv expand cos arg
is?(op, "csc"::Symbol) => inv expand sin arg
is?(op, "log"::Symbol) =>
exlog(numer(x := expand arg)) - exlog denom x
num := numer arg
den := denom arg
(b := (reductum num) / den) ^= 0 =>
a := (leadingMonomial num) / den
is?(op, "exp"::Symbol) => exp(expand a) * expand(exp b)
is?(op, "sin"::Symbol) =>
sin(expand a) * expand(cos b) + cos(expand a) * expand(sin b)
is?(op, "cos"::Symbol) =>
cos(expand a) * expand(cos b) - sin(expand a) * expand(sin b)
is?(op, "tan"::Symbol) =>
ta := tan expand a
tb := expand tan b
(ta + tb) / (1 - ta * tb)
is?(op, "cot"::Symbol) =>
cta := cot expand a
ctb := expand cot b
(cta * ctb - 1) / (ctb + cta)
op [expand x for x in argument k]$List(F)
op [expand x for x in argument k]$List(F)
smpexp p ==
ans:F := 0
while p ^= 0 repeat
ans := ans + termexp leadingMonomial p
p := reductum p
ans
-- this now works in 3 passes over the expression:
-- pass1 rewrites trigs and htrigs in terms of sin,cos,sinh,cosh
-- pass2 rewrites sin**2 and sinh**2 in terms of cos and cosh.
-- pass3 groups exponentials together
simplify0 x ==
simplifyExp eval(eval(x,
["tan"::Symbol,"cot"::Symbol,"sec"::Symbol,"csc"::Symbol,
"tanh"::Symbol,"coth"::Symbol,"sech"::Symbol,"csch"::Symbol],
[t2t,c2t,s2c,c2s,th2th,ch2th,sh2ch,ch2sh]),
["sin"::Symbol, "sinh"::Symbol], [2, 2], [s2c2, sh2ch2])
|