This file is indexed.

/usr/share/axiom-20170501/src/algebra/TRMANIP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
)abbrev package TRMANIP TranscendentalManipulations
++ Author: Bob Sutor, Manuel Bronstein
++ Date Created: Way back
++ Date Last Updated: 22 January 1996, added simplifyLog MCD.
++ Description:
++ TranscendentalManipulations provides functions to simplify and
++ expand expressions involving transcendental operators.

TranscendentalManipulations(R, F) : SIG == CODE where
  R : Join(OrderedSet, GcdDomain)
  F : Join(FunctionSpace R, TranscendentalFunctionCategory)

  Z       ==> Integer
  K       ==> Kernel F
  P       ==> SparseMultivariatePolynomial(R, K)
  UP      ==> SparseUnivariatePolynomial P
  POWER   ==> "%power"::Symbol
  POW     ==> Record(val: F,exponent: Z)
  PRODUCT ==> Record(coef : Z, var : K)
  FPR     ==> Fraction Polynomial R

  SIG ==> with

    expand : F -> F
      ++ expand(f) performs the following expansions on f:\begin{items}
      ++ \item 1. logs of products are expanded into sums of logs,
      ++ \item 2. trigonometric and hyperbolic trigonometric functions
      ++ of sums are expanded into sums of products of trigonometric
      ++ and hyperbolic trigonometric functions.
      ++ \item 3. formal powers of the form \spad{(a/b)**c} are expanded into
      ++ \spad{a**c * b**(-c)}.
      ++ \end{items}

    simplify : F -> F
      ++ simplify(f) performs the following simplifications on f:\begin{items}
      ++ \item 1. rewrites trigs and hyperbolic trigs in terms
      ++ of \spad{sin} ,\spad{cos}, \spad{sinh}, \spad{cosh}.
      ++ \item 2. rewrites \spad{sin**2} and \spad{sinh**2} in terms
      ++ of \spad{cos} and \spad{cosh},
      ++ \item 3. rewrites \spad{exp(a)*exp(b)} as \spad{exp(a+b)}.
      ++ \item 4. rewrites \spad{(a**(1/n))**m * (a**(1/s))**t} as a single
      ++ power of a single radical of \spad{a}.
      ++ \end{items}

    htrigs : F -> F
      ++ htrigs(f) converts all the exponentials in f into
      ++ hyperbolic sines and cosines.

    simplifyExp : F -> F
      ++ simplifyExp(f) converts every product \spad{exp(a)*exp(b)}
      ++ appearing in f into \spad{exp(a+b)}.

    simplifyLog : F -> F
      ++ simplifyLog(f) converts every \spad{log(a) - log(b)} appearing in f
      ++ into \spad{log(a/b)}, every \spad{log(a) + log(b)} into \spad{log(a*b)}
      ++ and every \spad{n*log(a)} into \spad{log(a^n)}.

    expandPower : F -> F
      ++ expandPower(f) converts every power \spad{(a/b)**c} appearing
      ++ in f into \spad{a**c * b**(-c)}.

    expandLog : F -> F
      ++ expandLog(f) converts every \spad{log(a/b)} appearing in f into
      ++ \spad{log(a) - log(b)}, and every \spad{log(a*b)} into
      ++ \spad{log(a) + log(b)}..

    cos2sec : F -> F
      ++ cos2sec(f) converts every \spad{cos(u)} appearing in f into
      ++ \spad{1/sec(u)}.

    cosh2sech : F -> F
      ++ cosh2sech(f) converts every \spad{cosh(u)} appearing in f into
      ++ \spad{1/sech(u)}.

    cot2trig : F -> F
      ++ cot2trig(f) converts every \spad{cot(u)} appearing in f into
      ++ \spad{cos(u)/sin(u)}.

    coth2trigh : F -> F
      ++ coth2trigh(f) converts every \spad{coth(u)} appearing in f into
      ++ \spad{cosh(u)/sinh(u)}.

    csc2sin : F -> F
      ++ csc2sin(f) converts every \spad{csc(u)} appearing in f into
      ++ \spad{1/sin(u)}.

    csch2sinh : F -> F
      ++ csch2sinh(f) converts every \spad{csch(u)} appearing in f into
      ++ \spad{1/sinh(u)}.

    sec2cos : F -> F
      ++ sec2cos(f) converts every \spad{sec(u)} appearing in f into
      ++ \spad{1/cos(u)}.

    sech2cosh : F -> F
      ++ sech2cosh(f) converts every \spad{sech(u)} appearing in f into
      ++ \spad{1/cosh(u)}.

    sin2csc : F -> F
      ++ sin2csc(f) converts every \spad{sin(u)} appearing in f into
      ++ \spad{1/csc(u)}.

    sinh2csch : F -> F
      ++ sinh2csch(f) converts every \spad{sinh(u)} appearing in f into
      ++ \spad{1/csch(u)}.

    tan2trig : F -> F
      ++ tan2trig(f) converts every \spad{tan(u)} appearing in f into
      ++ \spad{sin(u)/cos(u)}.

    tanh2trigh : F -> F
      ++ tanh2trigh(f) converts every \spad{tanh(u)} appearing in f into
      ++ \spad{sinh(u)/cosh(u)}.

    tan2cot : F -> F
      ++ tan2cot(f) converts every \spad{tan(u)} appearing in f into
      ++ \spad{1/cot(u)}.

    tanh2coth : F -> F
      ++ tanh2coth(f) converts every \spad{tanh(u)} appearing in f into
      ++ \spad{1/coth(u)}.

    cot2tan : F -> F
      ++ cot2tan(f) converts every \spad{cot(u)} appearing in f into
      ++ \spad{1/tan(u)}.

    coth2tanh : F -> F
      ++ coth2tanh(f) converts every \spad{coth(u)} appearing in f into
      ++ \spad{1/tanh(u)}.

    removeCosSq : F -> F
      ++ removeCosSq(f) converts every \spad{cos(u)**2} appearing in f into
      ++ \spad{1 - sin(x)**2}, and also reduces higher
      ++ powers of \spad{cos(u)} with that formula.

    removeSinSq : F -> F
      ++ removeSinSq(f) converts every \spad{sin(u)**2} appearing in f into
      ++ \spad{1 - cos(x)**2}, and also reduces higher powers of
      ++ \spad{sin(u)} with that formula.

    removeCoshSq : F -> F
      ++ removeCoshSq(f) converts every \spad{cosh(u)**2} appearing in f into
      ++ \spad{1 - sinh(x)**2}, and also reduces higher powers of
      ++ \spad{cosh(u)} with that formula.

    removeSinhSq : F -> F
      ++ removeSinhSq(f) converts every \spad{sinh(u)**2} appearing in f into
      ++ \spad{1 - cosh(x)**2}, and also reduces higher powers
      ++ of \spad{sinh(u)} with that formula.

    if R has PatternMatchable(R) and R has ConvertibleTo(Pattern(R))
     and F has ConvertibleTo(Pattern(R)) and F has PatternMatchable R then

      expandTrigProducts : F -> F
        ++ expandTrigProducts(e) replaces \axiom{sin(x)*sin(y)} by
        ++ \spad{(cos(x-y)-cos(x+y))/2}, \axiom{cos(x)*cos(y)} by
        ++ \spad{(cos(x-y)+cos(x+y))/2}, and \axiom{sin(x)*cos(y)} by
        ++ \spad{(sin(x-y)+sin(x+y))/2}.  Note that this operation uses
        ++ the pattern matcher and so is relatively expensive.  To avoid
        ++ getting into an infinite loop the transformations are applied
        ++ at most ten times.

  CODE ==> add

    import FactoredFunctions(P)
    import PolynomialCategoryLifting(IndexedExponents K, K, R, P, F)
    import
      PolynomialCategoryQuotientFunctions(IndexedExponents K,K,R,P,F)

    smpexp    : P -> F
    termexp   : P -> F
    exlog     : P -> F
    smplog    : P -> F
    smpexpand : P -> F
    smp2htrigs: P -> F
    kerexpand : K -> F
    expandpow : K -> F
    logexpand : K -> F
    sup2htrigs: (UP, F) -> F
    supexp    : (UP, F, F, Z) -> F
    ueval     : (F, String, F -> F) -> F
    ueval2    : (F, String, F -> F) -> F
    powersimp : (P, List K) -> F
    t2t       : F -> F
    c2t       : F -> F
    c2s       : F -> F
    s2c       : F -> F
    s2c2      : F -> F
    th2th     : F -> F
    ch2th     : F -> F
    ch2sh     : F -> F
    sh2ch     : F -> F
    sh2ch2    : F -> F
    simplify0 : F -> F
    simplifyLog1 : F -> F
    logArgs   : List F -> F

    import F
    import List F

    if R has PatternMatchable R and R has ConvertibleTo Pattern R 
     and F has ConvertibleTo(Pattern(R)) and F has PatternMatchable R then
      XX : F := coerce new()$Symbol
      YY : F := coerce new()$Symbol
      sinCosRule : RewriteRule(R,R,F) :=
        rule(cos(XX)*sin(YY),(sin(XX+YY)-sin(XX-YY))/2::F)
      sinSinRule : RewriteRule(R,R,F) :=
        rule(sin(XX)*sin(YY),(cos(XX-YY)-cos(XX+YY))/2::F)
      cosCosRule : RewriteRule(R,R,F) :=
        rule(cos(XX)*cos(YY),(cos(XX-YY)+cos(XX+YY))/2::F)
      sinhSum : RewriteRule(R,R,F) :=
        rule(sinh(XX+YY),(sinh(XX)*cosh(YY)+cosh(XX)*sinh(YY))::F)
      coshSum : RewriteRule(R,R,F) :=
        rule(cosh(XX+YY),(cosh(XX)*cosh(YY)+sinh(XX)*sinh(YY))::F)
      tanhSum : RewriteRule(R,R,F) :=
        rule(tanh(XX+YY),((tanh(XX)+tanh(YY))/(1+tanh(XX)*tanh(YY)))::F)
      cothSum : RewriteRule(R,R,F) :=
        rule(coth(XX+YY),((coth(XX)*coth(YY)+1)/(coth(YY)+coth(XX)))::F)
      sinhpsinh : RewriteRule(R,R,F) :=
        rule(sinh(XX)+sinh(YY),(2*sinh(1/2*(XX+YY))*cosh(1/2*(XX-YY)))::F)
      sinhmsinh : RewriteRule(R,R,F) :=
        rule(sinh(XX)-sinh(YY),(2*cosh(1/2*(XX+YY))*sinh(1/2*(XX-YY)))::F)
      coshpcosh : RewriteRule(R,R,F) :=
        rule(cosh(XX)+cosh(YY),(2*cosh(1/2*(XX+YY))*cosh(1/2*(XX-YY)))::F)
      coshmcosh : RewriteRule(R,R,F) :=
        rule(cosh(XX)-cosh(YY),(2*sinh(1/2*(XX+YY))*sinh(1/2*(XX-YY)))::F)
      expandTrigProducts(e:F):F ==
        applyRules([sinCosRule,sinSinRule,cosCosRule,
                    sinhSum,coshSum,tanhSum,cothSum,
                    sinhpsinh,sinhmsinh,coshpcosh,
                    coshmcosh],e,10)$ApplyRules(R,R,F)

    logArgs(l:List F):F ==
      -- This function will take a list of Expressions (implicitly a sum) and
      -- add them up, combining log terms.  It also replaces n*log(x) by
      -- log(x^n).
      import K
      sum  : F := 0
      arg  : F := 1
      for term in l repeat
        is?(term,"log"::Symbol) =>
          arg := arg * simplifyLog(first(argument(first(kernels(term)))))
        -- Now look for multiples, including negative ones.
        prod : Union(PRODUCT, "failed") := isMult(term)
        (prod case PRODUCT) and is?(prod.var,"log"::Symbol) =>
            arg := arg * simplifyLog ((first argument(prod.var))**(prod.coef))
        sum := sum+term
      sum+log(arg)
    
    simplifyLog(e:F):F ==
      simplifyLog1(numerator e)/simplifyLog1(denominator e)

    simplifyLog1(e:F):F ==
      freeOf?(e,"log"::Symbol) => e

      -- Check for n*log(u)
      prod : Union(PRODUCT, "failed") := isMult(e)
      (prod case PRODUCT) and is?(prod.var,"log"::Symbol) =>
        log simplifyLog ((first argument(prod.var))**(prod.coef))
      
      termList : Union(List(F),"failed") := isTimes(e)
      -- I'm using two variables, termList and terms, to work round a
      -- bug in the old compiler.
      not (termList case "failed") =>
        -- We want to simplify each log term in the product and then multiply
        -- them together.  However, if there is a constant or arithmetic
        -- expression (something which looks like a Polynomial) we would
        -- like to combine it with a log term.
        terms :List F := [simplifyLog(term) for term in termList::List(F)]
        exprs :List F := []
        for i in 1..#terms repeat
          if retractIfCan(terms.i)@Union(FPR,"failed") case FPR then
            exprs := cons(terms.i,exprs)
            terms := delete!(terms,i)
        if not empty? exprs then
          foundLog := false
          i : NonNegativeInteger := 0
          while (not(foundLog) and (i < #terms)) repeat
            i := i+1
            if is?(terms.i,"log"::Symbol) then
              args : List F := argument(retract(terms.i)@K)
              setelt(terms,i, log simplifyLog1(first(args)**( */exprs)))
              foundLog := true
          -- The next line deals with a situation which shouldn't occur,
          -- since we have checked whether we are freeOf log already.
          if not foundLog then terms := append(exprs,terms)
        */terms
    
      terms : Union(List(F),"failed") := isPlus(e)
      not (terms case "failed") => logArgs(terms) 

      expt : Union(POW, "failed") := isPower(e)
      (expt case POW) and not (expt.exponent = 1) =>
        simplifyLog(expt.val)**(expt.exponent)
    
      kers : List K := kernels e
      not(((#kers) = 1)) => e -- Have a constant
      kernel(operator first kers,[simplifyLog(u) for u in argument first kers])


    if R has RetractableTo Integer then
      simplify x == rootProduct(simplify0 x)$AlgebraicManipulations(R,F)

    else simplify x == simplify0 x

    expandpow k ==
      a := expandPower first(arg := argument k)
      b := expandPower second arg
      ne:F := (((numer a) = 1) => 1; numer(a)::F ** b)
      de:F := (((denom a) = 1) => 1; denom(a)::F ** (-b))
      ne * de

    termexp p ==
      exponent:F := 0
      coef := (leadingCoefficient p)::P
      lpow := select((z:K):Boolean+->is?(z,POWER)$K, lk := variables p)$List(K)
      for k in lk repeat
        d := degree(p, k)
        if is?(k, "exp"::Symbol) then
          exponent := exponent + d * first argument k
        else if not is?(k, POWER) then
          -- Expand arguments to functions as well ... MCD 23/1/97
          --coef := coef * monomial(1, k, d)
          coef := coef * 
           monomial(1, 
             kernel(operator k,
               [simplifyExp u for u in argument k], height k), d)
      coef::F * exp exponent * powersimp(p, lpow)

    expandPower f ==
      l := select((z:K):Boolean +-> is?(z, POWER)$K, kernels f)$List(K)
      eval(f, l, [expandpow k for k in l])

-- l is a list of pure powers appearing as kernels in p
    powersimp(p, l) ==
      empty? l => 1
      k := first l                           -- k = a**b
      a := first(arg := argument k)
      exponent := degree(p, k) * second arg
      empty?(lk := select((z:K):Boolean +-> a = first argument z, rest l)) =>
        (a ** exponent) * powersimp(p, rest l)
      for k0 in lk repeat
        exponent := exponent + degree(p, k0) * second argument k0
      (a ** exponent) * powersimp(p, setDifference(rest l, lk))

    t2t x         == sin(x) / cos(x)
    c2t x         == cos(x) / sin(x)
    c2s x         == inv sin x
    s2c x         == inv cos x
    s2c2 x        == 1 - cos(x)**2
    th2th x       == sinh(x) / cosh(x)
    ch2th x       == cosh(x) / sinh(x)
    ch2sh x       == inv sinh x
    sh2ch x       == inv cosh x
    sh2ch2 x      == cosh(x)**2 - 1
    ueval(x, s,f) == eval(x, s::Symbol, f)
    ueval2(x,s,f) == eval(x, s::Symbol, 2, f)
    cos2sec x     == ueval(x, "cos", (z1:F):F +-> inv sec z1)
    sin2csc x     == ueval(x, "sin", (z1:F):F +-> inv csc z1)
    csc2sin x     == ueval(x, "csc", c2s)
    sec2cos x     == ueval(x, "sec", s2c)
    tan2cot x     == ueval(x, "tan", (z1:F):F +-> inv cot z1)
    cot2tan x     == ueval(x, "cot", (z1:F):F +-> inv tan z1)
    tan2trig x    == ueval(x, "tan", t2t)
    cot2trig x    == ueval(x, "cot", c2t)
    cosh2sech x   == ueval(x, "cosh", (z1:F):F +-> inv sech z1)
    sinh2csch x   == ueval(x, "sinh", (z1:F):F +-> inv csch z1)
    csch2sinh x   == ueval(x, "csch", ch2sh)
    sech2cosh x   == ueval(x, "sech", sh2ch)
    tanh2coth x   == ueval(x, "tanh", (z1:F):F +-> inv coth z1)
    coth2tanh x   == ueval(x, "coth", (z1:F):F +-> inv tanh z1)
    tanh2trigh x  == ueval(x, "tanh", th2th)
    coth2trigh x  == ueval(x, "coth", ch2th)
    removeCosSq x == ueval2(x, "cos", (z1:F):F +-> 1 - (sin z1)**2)
    removeSinSq x == ueval2(x, "sin", s2c2)
    removeCoshSq x== ueval2(x, "cosh", (z1:F):F +-> 1 + (sinh z1)**2)
    removeSinhSq x== ueval2(x, "sinh", sh2ch2)
    expandLog x   == smplog(numer x) / smplog(denom x)
    simplifyExp x == (smpexp numer x) / (smpexp denom x)
    expand x      == (smpexpand numer x) / (smpexpand denom x)
    smpexpand p   == map(kerexpand, (r1:R):F +-> r1::F, p)
    smplog p      == map(logexpand, (r1:R):F +-> r1::F, p)
    smp2htrigs p  == map((k1:K):F +-> htrigs(k1::F), (r1:R):F +-> r1::F, p)

    htrigs f ==
      (m := mainKernel f) case "failed" => f
      op  := operator(k := m::K)
      arg := [htrigs x for x in argument k]$List(F)
      num := univariate(numer f, k)
      den := univariate(denom f, k)
      is?(op, "exp"::Symbol) =>
        g1 := cosh(a := first arg) + sinh(a)
        g2 := cosh(a) - sinh(a)
        supexp(num,g1,g2,b:= (degree num)::Z quo 2)/supexp(den,g1,g2,b)
      sup2htrigs(num, g1:= op arg) / sup2htrigs(den, g1)

    supexp(p, f1, f2, bse) ==
      ans:F := 0
      while p ^= 0 repeat
        g := htrigs(leadingCoefficient(p)::F)
        if ((d := degree(p)::Z - bse) >= 0) then
             ans := ans + g * f1 ** d
        else ans := ans + g * f2 ** (-d)
        p := reductum p
      ans

    sup2htrigs(p, f) ==
      (map(smp2htrigs, p)$SparseUnivariatePolynomialFunctions2(P, F)) f

    exlog p == +/[r.coef * log(r.logand::F) for r in log squareFree p]

    logexpand k ==
      nullary?(op := operator k) => k::F
      is?(op, "log"::Symbol) =>
         exlog(numer(x := expandLog first argument k)) - exlog denom x
      op [expandLog x for x in argument k]$List(F)

    kerexpand k ==
      nullary?(op := operator k) => k::F
      is?(op, POWER) => expandpow k
      arg := first argument k
      is?(op, "sec"::Symbol) => inv expand cos arg
      is?(op, "csc"::Symbol) => inv expand sin arg
      is?(op, "log"::Symbol) =>
         exlog(numer(x := expand arg)) - exlog denom x
      num := numer arg
      den := denom arg
      (b := (reductum num) / den) ^= 0 =>
        a := (leadingMonomial num) / den
        is?(op, "exp"::Symbol) => exp(expand a) * expand(exp b)
        is?(op, "sin"::Symbol) =>
           sin(expand a) * expand(cos b) + cos(expand a) * expand(sin b)
        is?(op, "cos"::Symbol) =>
           cos(expand a) * expand(cos b) - sin(expand a) * expand(sin b)
        is?(op, "tan"::Symbol) =>
          ta := tan expand a
          tb := expand tan b
          (ta + tb) / (1 - ta * tb)
        is?(op, "cot"::Symbol) =>
          cta := cot expand a
          ctb := expand cot b
          (cta * ctb - 1) / (ctb + cta)
        op [expand x for x in argument k]$List(F)
      op [expand x for x in argument k]$List(F)

    smpexp p ==
      ans:F := 0
      while p ^= 0 repeat
        ans := ans + termexp leadingMonomial p
        p   := reductum p
      ans

    -- this now works in 3 passes over the expression:
    --   pass1 rewrites trigs and htrigs in terms of sin,cos,sinh,cosh
    --   pass2 rewrites sin**2 and sinh**2 in terms of cos and cosh.
    --   pass3 groups exponentials together
    simplify0 x ==
      simplifyExp eval(eval(x,
          ["tan"::Symbol,"cot"::Symbol,"sec"::Symbol,"csc"::Symbol,
           "tanh"::Symbol,"coth"::Symbol,"sech"::Symbol,"csch"::Symbol],
              [t2t,c2t,s2c,c2s,th2th,ch2th,sh2ch,ch2sh]),
                ["sin"::Symbol, "sinh"::Symbol], [2, 2], [s2c2, sh2ch2])