This file is indexed.

/usr/share/axiom-20170501/src/algebra/TSETCAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
)abbrev category TSETCAT TriangularSetCategory
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ References :
++ SALSA Solvers for Algebraic Systems and Applications
++ Kalk91 Three contributions to elimination theory
++ Kalk98 Algorithmic properties of polynomial rings
++ Aubr96 Triangular Sets for Solving Polynomial Systems: 
++ Aubr99 On the Theories of Triangular Sets
++ Aubr99a Triangular Sets for Solving Polynomial Systems: 
++ Laza91 A new method for solving algebraic systems of positive dimension
++ Maza95 Polynomial Gcd Computations over Towers of Algebraic Extensions
++ Maza97 Calculs de pgcd au-dessus des tours d'extensions simples et 
++        resolution des systemes d'equations algebriques
++ Maza98 A new algorithm for computing triangular decomposition of 
++        algebraic varieties
++ Maza00 On Triangular Decompositions of Algebraic Varieties
++ Description:
++ The category of triangular sets of multivariate polynomials
++ with coefficients in an integral domain.
++ Let \axiom{R} be an integral domain and \axiom{V} a finite ordered set of 
++ variables, say \axiom{X1 < X2 < ... < Xn}.  
++ A set \axiom{S} of polynomials in \axiom{R[X1,X2,...,Xn]} is triangular
++ if no elements of \axiom{S} lies in \axiom{R}, and if two distinct 
++ elements of \axiom{S} have distinct main variables. 
++ Note that the empty set is a triangular set. A triangular set is not
++ necessarily a (lexicographical) Groebner basis and the notion of 
++ reduction related to triangular sets is based on the recursive view
++ of polynomials. We recall this notion here and refer to [1] for more 
++ details.
++ A polynomial \axiom{P} is reduced w.r.t a non-constant polynomial 
++ \axiom{Q} if the degree of \axiom{P} in the main variable of \axiom{Q} 
++ is less than the main degree of \axiom{Q}.
++ A polynomial \axiom{P} is reduced w.r.t a triangular set \axiom{T}
++ if it is reduced w.r.t. every polynomial of \axiom{T}. 

TriangularSetCategory(R,E,V,P) : Category == SIG where
  R : IntegralDomain
  E : OrderedAbelianMonoidSup
  V : OrderedSet
  P : RecursivePolynomialCategory(R,E,V)

  SIG ==> PolynomialSetCategory(R,E,V,P) with 

    finiteAggregate

    shallowlyMutable

    infRittWu? : ($,$) -> Boolean
      ++ \axiom{infRittWu?(ts1,ts2)} returns true iff \axiom{ts2} has 
      ++ higher rank than \axiom{ts1} in Wu Wen Tsun sense.

    basicSet : (List P,((P,P)->Boolean)) -> _
     Union(Record(bas:$,top:List P),"failed")
      ++ \axiom{basicSet(ps,redOp?)} returns \axiom{[bs,ts]} where
      ++ \axiom{concat(bs,ts)} is \axiom{ps} and \axiom{bs}
      ++ is a basic set in Wu Wen Tsun sense of \axiom{ps} w.r.t 
      ++ the reduction-test \axiom{redOp?}, if no non-zero constant 
      ++ polynomial lie in \axiom{ps}, otherwise \axiom{"failed"} is returned.

    basicSet : (List P,(P->Boolean),((P,P)->Boolean)) -> _
     Union(Record(bas:$,top:List P),"failed")
      ++ \axiom{basicSet(ps,pred?,redOp?)} returns the same as 
      ++ \axiom{basicSet(qs,redOp?)}
      ++ where \axiom{qs} consists of the polynomials of \axiom{ps}
      ++ satisfying property \axiom{pred?}.

    initials : $ -> List P
      ++ \axiom{initials(ts)} returns the list of the non-constant initials
      ++ of the members of \axiom{ts}.

    degree : $ -> NonNegativeInteger
      ++ \axiom{degree(ts)} returns the product of main degrees of the 
      ++ members of \axiom{ts}.

    quasiComponent : $ -> Record(close:List P,open:List P)
      ++ \axiom{quasiComponent(ts)} returns \axiom{[lp,lq]} where \axiom{lp} 
      ++ is the list of the members of \axiom{ts} and \axiom{lq}is 
      ++ \axiom{initials(ts)}.

    normalized? : (P,$) -> Boolean
      ++ \axiom{normalized?(p,ts)} returns true iff \axiom{p} and all 
      ++ its iterated initials have degree zero w.r.t. the main variables 
      ++ of the polynomials of \axiom{ts}

    normalized? : $  -> Boolean
      ++ \axiom{normalized?(ts)} returns true iff for every axiom{p} in 
      ++ \axiom{ts} we have \axiom{normalized?(p,us)} where \axiom{us} 
      ++ is \axiom{collectUnder(ts,mvar(p))}.

    reduced? : (P,$,((P,P) -> Boolean)) -> Boolean
      ++ \axiom{reduced?(p,ts,redOp?)} returns true iff \axiom{p} is reduced 
      ++ w.r.t.in the sense of the operation \axiom{redOp?}, that is if for 
      ++ every \axiom{t} in \axiom{ts} \axiom{redOp?(p,t)} holds.

    stronglyReduced? : (P,$) -> Boolean
      ++ \axiom{stronglyReduced?(p,ts)} returns true iff \axiom{p} 
      ++ is reduced w.r.t. \axiom{ts}.

    headReduced? : (P,$) -> Boolean
      ++ \axiom{headReduced?(p,ts)} returns true iff the head of \axiom{p} is 
      ++ reduced w.r.t. \axiom{ts}.

    initiallyReduced? : (P,$) -> Boolean
      ++ \axiom{initiallyReduced?(p,ts)} returns true iff \axiom{p} and all 
      ++ its iterated initials are reduced w.r.t. to the elements of 
      ++ \axiom{ts} with the same main variable.

    autoReduced? : ($,((P,List(P)) -> Boolean)) -> Boolean
      ++ \axiom{autoReduced?(ts,redOp?)} returns true iff every element of 
      ++ \axiom{ts} is reduced w.r.t to every other in the sense of 
      ++ \axiom{redOp?}

    stronglyReduced? : $ -> Boolean
      ++ \axiom{stronglyReduced?(ts)} returns true iff every element of 
      ++ \axiom{ts} is reduced w.r.t to any other element of \axiom{ts}.

    headReduced? : $ -> Boolean
      ++ headReduced?(ts) returns true iff the head of every element of 
      ++ \axiom{ts} is reduced w.r.t to any other element of \axiom{ts}.

    initiallyReduced? : $ -> Boolean
      ++ initiallyReduced?(ts) returns true iff for every element \axiom{p} 
      ++ of \axiom{ts}. \axiom{p} and all its iterated initials are reduced 
      ++ w.r.t. to the other elements of \axiom{ts} with the same main 
      ++ variable.

    reduce : (P,$,((P,P) -> P),((P,P) -> Boolean) ) -> P
      ++ \axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \axiom{r}  
      ++ such that \axiom{redOp?(r,p)} holds for every \axiom{p} of 
      ++ \axiom{ts} and there exists some product \axiom{h} of the initials 
      ++ of the members of \axiom{ts} such that \axiom{h*p - r} lies in the 
      ++ ideal generated by \axiom{ts}. The operation \axiom{redOp} must 
      ++ satisfy the following conditions. For every \axiom{p} and \axiom{q} 
      ++ we have  \axiom{redOp?(redOp(p,q),q)} and there exists an integer 
      ++ \axiom{e} and a polynomial \axiom{f} such that 
      ++ \axiom{init(q)^e*p = f*q + redOp(p,q)}. 

    rewriteSetWithReduction : (List P,$,((P,P) -> P),((P,P) -> Boolean) ) ->
     List P
      ++ \axiom{rewriteSetWithReduction(lp,ts,redOp,redOp?)} returns a list 
      ++ \axiom{lq} of polynomials such that 
      ++ \axiom{[reduce(p,ts,redOp,redOp?) for p in lp]} and \axiom{lp} 
      ++ have the same zeros inside the regular zero set of \axiom{ts}. 
      ++ Moreover, for every polynomial \axiom{q} in \axiom{lq} and every 
      ++ polynomial \axiom{t} in \axiom{ts}
      ++ \axiom{redOp?(q,t)} holds and there exists a polynomial \axiom{p}
      ++ in the ideal generated by \axiom{lp} and a product \axiom{h} of 
      ++ \axiom{initials(ts)} such that \axiom{h*p - r} lies in the ideal 
      ++ generated by \axiom{ts}. 
      ++ The operation \axiom{redOp} must satisfy the following conditions.
      ++ For every \axiom{p} and \axiom{q} we have 
      ++ \axiom{redOp?(redOp(p,q),q)}
      ++ and there exists an integer \axiom{e} and a polynomial \axiom{f}
      ++ such that \axiom{init(q)^e*p = f*q + redOp(p,q)}.

    stronglyReduce : (P,$) -> P
      ++ \axiom{stronglyReduce(p,ts)} returns a polynomial \axiom{r} such that
      ++ \axiom{stronglyReduced?(r,ts)} holds and there exists some product 
      ++ \axiom{h} of \axiom{initials(ts)}
      ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.

    headReduce : (P,$) -> P
      ++ \axiom{headReduce(p,ts)} returns a polynomial \axiom{r}  such that 
      ++ \axiom{headReduce?(r,ts)} holds and there exists some product 
      ++ \axiom{h} of \axiom{initials(ts)} such that \axiom{h*p - r} lies 
      ++ in the ideal generated by \axiom{ts}.

    initiallyReduce : (P,$) -> P
      ++ \axiom{initiallyReduce(p,ts)} returns a polynomial \axiom{r}  
      ++ such that  \axiom{initiallyReduced?(r,ts)}
      ++ holds and there exists some product \axiom{h} of \axiom{initials(ts)}
      ++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.

    removeZero : (P, $) -> P
      ++ \axiom{removeZero(p,ts)} returns \axiom{0} if \axiom{p} reduces
      ++ to \axiom{0} by pseudo-division w.r.t \axiom{ts} otherwise
      ++ returns a polynomial \axiom{q} computed from \axiom{p}
      ++ by removing any coefficient in \axiom{p} reducing to \axiom{0}.

    collectQuasiMonic : $ -> $
      ++ \axiom{collectQuasiMonic(ts)} returns the subset of \axiom{ts}
      ++ consisting of the polynomials with initial in \axiom{R}.

    reduceByQuasiMonic : (P, $) -> P
      ++ \axiom{reduceByQuasiMonic(p,ts)} returns the same as
      ++ \axiom{remainder(p,collectQuasiMonic(ts)).polnum}.

    zeroSetSplit : List P -> List $
      ++ \axiom{zeroSetSplit(lp)} returns a list \axiom{lts} of triangular 
      ++ sets such that the zero set of \axiom{lp} is the union of the 
      ++ closures of the regular zero sets  of the members of \axiom{lts}.

    zeroSetSplitIntoTriangularSystems : List P -> _
     List Record(close:$,open:List P)
      ++ \axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of 
      ++ triangular systems \axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the 
      ++ zero set of \axiom{lp} is the union of the closures of the 
      ++ \axiom{W_i} where \axiom{W_i} consists of the zeros of \axiom{ts} 
      ++ which do not cancel any polynomial in \axiom{qsi}.

    first : $ -> Union(P,"failed")
      ++ \axiom{first(ts)} returns the polynomial of \axiom{ts} with 
      ++ greatest main variable if \axiom{ts} is not empty, otherwise 
      ++ returns \axiom{"failed"}.

    last : $ -> Union(P,"failed")
      ++ \axiom{last(ts)} returns the polynomial of \axiom{ts} with 
      ++ smallest main variable if \axiom{ts} is not empty, otherwise 
      ++ returns \axiom{"failed"}.

    rest : $ -> Union($,"failed")
      ++ \axiom{rest(ts)} returns the polynomials of \axiom{ts} with smaller 
      ++ main variable than \axiom{mvar(ts)} if \axiom{ts} is not empty, 
      ++ otherwise returns "failed"

    algebraicVariables : $ -> List(V)
      ++ \axiom{algebraicVariables(ts)} returns the decreasingly sorted 
      ++ list of the main variables of the polynomials of \axiom{ts}.

    algebraic? : (V,$) -> Boolean
      ++ \axiom{algebraic?(v,ts)} returns true iff \axiom{v} is the 
      ++ main variable of some polynomial in \axiom{ts}.

    select : ($,V) -> Union(P,"failed")
      ++ \axiom{select(ts,v)} returns the polynomial of \axiom{ts} with 
      ++ \axiom{v} as main variable, if any.

    extendIfCan : ($,P) -> Union($,"failed")
      ++ \axiom{extendIfCan(ts,p)} returns a triangular set which encodes 
      ++ the simple extension by \axiom{p} of the extension of the base 
      ++ field defined by \axiom{ts}, according
      ++ to the properties of triangular sets of the current domain.
      ++ If the required properties do not hold then "failed" is returned.
      ++ This operation encodes in some sense the properties of the
      ++ triangular sets of the current category. Is is used to implement
      ++ the \axiom{construct} operation to guarantee that every triangular
      ++ set build from a list of polynomials has the required properties.

    extend : ($,P) -> $
      ++ \axiom{extend(ts,p)} returns a triangular set which encodes the 
      ++ simple extension by \axiom{p} of the extension of the base field 
      ++ defined by \axiom{ts}, according to the properties of triangular 
      ++ sets of the current category. If the required properties do not 
      ++ hold an error is returned.

    if V has Finite then

      coHeight : $ -> NonNegativeInteger
        ++ \axiom{coHeight(ts)} returns \axiom{size()\$V} minus \axiom{\#ts}.

   add
     
     GPS ==> GeneralPolynomialSet(R,E,V,P)
     B ==> Boolean
     RBT ==> Record(bas:$,top:List P)

     ts:$ = us:$ ==
       empty?(ts)$$ => empty?(us)$$
       empty?(us)$$ => false
       first(ts)::P =$P first(us)::P => rest(ts)::$ =$$ rest(us)::$
       false

     infRittWu?(ts,us) ==
       empty?(us)$$ => not empty?(ts)$$
       empty?(ts)$$ => false
       p : P := (last(ts))::P
       q : P := (last(us))::P
       infRittWu?(p,q)$P => true
       supRittWu?(p,q)$P => false
       v : V := mvar(p)
       infRittWu?(collectUpper(ts,v),collectUpper(us,v))$$

     reduced?(p,ts,redOp?) ==
       lp : List P := members(ts)
       while (not empty? lp) and (redOp?(p,first(lp))) repeat
         lp := rest lp
       empty? lp 

     basicSet(ps,redOp?) ==
       ps := remove(zero?,ps)
       any?(ground?,ps) => "failed"::Union(RBT,"failed")
       ps := sort(infRittWu?,ps)
       p,b : P
       bs := empty()$$
       ts : List P := []
       while not empty? ps repeat
         b := first(ps)
         bs := extend(bs,b)$$
         ps := rest ps
         while (not empty? ps) and _
               (not reduced?((p := first(ps)),bs,redOp?)) repeat
           ts := cons(p,ts)
           ps := rest ps
       ([bs,ts]$RBT)::Union(RBT,"failed")

     basicSet(ps,pred?,redOp?) ==
       ps := remove(zero?,ps)
       any?(ground?,ps) => "failed"::Union(RBT,"failed")
       gps : List P := []
       bps : List P := []
       while not empty? ps repeat
         p := first ps
         ps := rest ps  
         if pred?(p)
           then
             gps := cons(p,gps)
           else
             bps := cons(p,bps)
       gps := sort(infRittWu?,gps)
       p,b : P
       bs := empty()$$
       ts : List P := []
       while not empty? gps repeat
         b := first(gps)
         bs := extend(bs,b)$$
         gps := rest gps
         while (not empty? gps) and _
               (not reduced?((p := first(gps)),bs,redOp?)) repeat
           ts := cons(p,ts)
           gps := rest gps
       ts := sort(infRittWu?,concat(ts,bps))
       ([bs,ts]$RBT)::Union(RBT,"failed")

     initials ts ==
       lip : List P := []
       empty? ts => lip
       lp := members(ts)
       while not empty? lp repeat
          p := first(lp)
          if not ground?((ip := init(p)))
            then
              lip := cons(primPartElseUnitCanonical(ip),lip)
          lp := rest lp
       removeDuplicates lip

     degree ts ==
       empty? ts => 0$NonNegativeInteger
       lp := members ts
       d : NonNegativeInteger := mdeg(first lp)
       while not empty? (lp := rest lp) repeat
         d := d * mdeg(first lp)
       d

     quasiComponent ts == 
       [members(ts),initials(ts)]

     normalized?(p,ts) ==
       normalized?(p,members(ts))$P

     stronglyReduced? (p,ts) ==
       reduced?(p,members(ts))$P

     headReduced? (p,ts) ==
       stronglyReduced?(head(p),ts)

     initiallyReduced? (p,ts) ==
       lp : List (P) := members(ts)
       red : Boolean := true
       while (not empty? lp) and (not ground?(p)$P) and red repeat
         while (not empty? lp) and (mvar(first(lp)) > mvar(p)) repeat 
           lp := rest lp
         if (not empty? lp) 
           then
             if  (mvar(first(lp)) = mvar(p))
               then
                 if reduced?(p,first(lp))
                   then
                     lp := rest lp
                     p := init(p)
                   else
                     red := false
               else
                 p := init(p)
       red

     reduce(p,ts,redOp,redOp?) ==
       (empty? ts) or (ground? p) => p
       ts0 := ts
       while (not empty? ts) and (not ground? p) repeat
          reductor := (first ts)::P
          ts := (rest ts)::$
          if not redOp?(p,reductor) 
            then 
              p := redOp(p,reductor)
              ts := ts0
       p

     rewriteSetWithReduction(lp,ts,redOp,redOp?) ==
       trivialIdeal? ts => lp
       lp := remove(zero?,lp)
       empty? lp => lp
       any?(ground?,lp) => [1$P]
       rs : List P := []
       while not empty? lp repeat
         p := first lp
         lp := rest lp
         p := primPartElseUnitCanonical reduce(p,ts,redOp,redOp?)
         if not zero? p
           then 
             if ground? p
               then
                 lp := []
                 rs := [1$P]
               else
                 rs := cons(p,rs)
       removeDuplicates rs

     stronglyReduce(p,ts) ==
       reduce (p,ts,lazyPrem,reduced?)

     headReduce(p,ts) ==
       reduce (p,ts,headReduce,headReduced?)

     initiallyReduce(p,ts) ==
       reduce (p,ts,initiallyReduce,initiallyReduced?)

     removeZero(p,ts) ==
       (ground? p) or (empty? ts) => p
       v := mvar(p)
       ts_v_- := collectUnder(ts,v)
       if algebraic?(v,ts) 
         then
           q := lazyPrem(p,select(ts,v)::P)
           zero? q => return q
           zero? removeZero(q,ts_v_-) => return 0
       empty? ts_v_- => p
       q: P := 0
       while positive? degree(p,v) repeat
          q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
          p := tail(p)
       q + removeZero(p,ts_v_-)

     reduceByQuasiMonic(p, ts) ==
       (ground? p) or (empty? ts) => p
       remainder(p,collectQuasiMonic(ts)).polnum

     autoReduced?(ts : $,redOp? : ((P,List(P)) -> Boolean)) ==        
       empty? ts => true
       lp : List (P) := members(ts)
       p : P := first(lp)
       lp := rest lp
       while (not empty? lp) and redOp?(p,lp) repeat
          p := first lp
          lp := rest lp
       empty? lp

     stronglyReduced? ts ==
       autoReduced? (ts, reduced?)

     normalized? ts ==
       autoReduced? (ts,normalized?)

     headReduced? ts ==
       autoReduced? (ts,headReduced?)

     initiallyReduced?  ts ==
       autoReduced? (ts,initiallyReduced?)
         
     mvar ts ==
       empty? ts => error"Error from TSETCAT in mvar : #1 is empty"
       mvar((first(ts))::P)$P

     first ts ==
       empty? ts => "failed"::Union(P,"failed")
       lp : List(P) := sort(supRittWu?,members(ts))$(List P)
       first(lp)::Union(P,"failed")

     last ts ==
       empty? ts => "failed"::Union(P,"failed")
       lp : List(P) := sort(infRittWu?,members(ts))$(List P)
       first(lp)::Union(P,"failed")

     rest ts ==
       empty? ts => "failed"::Union($,"failed")
       lp : List(P) := sort(supRittWu?,members(ts))$(List P)
       construct(rest(lp))::Union($,"failed")

     coerce (ts:$) : List(P) == 
       sort(supRittWu?,members(ts))$(List P)

     algebraicVariables ts ==
       [mvar(p) for p in members(ts)]

     algebraic? (v,ts) ==
       member?(v,algebraicVariables(ts))

     select  (ts,v) ==
       lp : List (P) := sort(supRittWu?,members(ts))$(List P)
       while (not empty? lp) and (not (v = mvar(first lp))) repeat
         lp := rest lp
       empty? lp => "failed"::Union(P,"failed")
       (first lp)::Union(P,"failed")

     collectQuasiMonic ts ==
       lp: List(P) := members(ts)
       newlp: List(P) := []
       while (not empty? lp) repeat
         if ground? init(first(lp)) then newlp := cons(first(lp),newlp)
         lp := rest lp
       construct(newlp)

     collectUnder (ts,v) ==
       lp : List (P) := sort(supRittWu?,members(ts))$(List P)
       while (not empty? lp) and (not (v > mvar(first lp))) repeat
         lp := rest lp       
       construct(lp)

     collectUpper  (ts,v) ==
       lp1 : List(P) := sort(supRittWu?,members(ts))$(List P)
       lp2 : List(P) := []
       while (not empty? lp1) and  (mvar(first lp1) > v) repeat
         lp2 := cons(first(lp1),lp2)
         lp1 := rest lp1
       construct(reverse lp2)

     construct(lp:List(P)) ==
       rif := retractIfCan(lp)@Union($,"failed")
       not (rif case $) => error"in construct : LP -> $ from TSETCAT : bad arg"
       rif::$

     retractIfCan(lp:List(P)) ==
       empty? lp => (empty()$$)::Union($,"failed")
       lp := sort(supRittWu?,lp)
       rif := retractIfCan(rest(lp))@Union($,"failed")
       not (rif case $) => _
        error "in retractIfCan : LP -> ... from TSETCAT : bad arg"
       extendIfCan(rif::$,first(lp))@Union($,"failed")

     extend(ts:$,p:P):$ ==
       eif := extendIfCan(ts,p)@Union($,"failed")
       not (eif case $) => error"in extend : ($,P) -> $ from TSETCAT : bad ars"
       eif::$

     if V has Finite then
        
       coHeight ts ==
         n := size()$V
         m := #(members ts)
         subtractIfCan(n,m)$NonNegativeInteger::NonNegativeInteger