This file is indexed.

/usr/share/axiom-20170501/src/algebra/ULS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
)abbrev domain ULS UnivariateLaurentSeries
++ Author: Clifton J. Williamson
++ Date Created: 18 January 1990
++ Date Last Updated: 21 September 1993
++ Description:
++ Dense Laurent series in one variable
++ \spadtype{UnivariateLaurentSeries} is a domain representing Laurent
++ series in one variable with coefficients in an arbitrary ring.  The
++ parameters of the type specify the coefficient ring, the power series
++ variable, and the center of the power series expansion.  For example,
++ \spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in
++ \spad{(x - 3)} with integer coefficients.

UnivariateLaurentSeries(Coef,var,cen) : SIG == CODE where
  Coef : Ring
  var : Symbol
  cen : Coef

  I   ==> Integer
  UTS ==> UnivariateTaylorSeries(Coef,var,cen)

  SIG ==> UnivariateLaurentSeriesConstructorCategory(Coef,UTS) with

    coerce : Variable(var) -> %
      ++ \spad{coerce(var)} converts the series variable \spad{var} into a
      ++ Laurent series.

    differentiate : (%,Variable(var)) -> %
      ++ \spad{differentiate(f(x),x)} returns the derivative of
      ++ \spad{f(x)} with respect to \spad{x}.

    if Coef has Algebra Fraction Integer then

      integrate : (%,Variable(var)) -> %
        ++ \spad{integrate(f(x))} returns an anti-derivative of the power
        ++ series \spad{f(x)} with constant coefficient 0.
        ++ We may integrate a series when we can divide coefficients
        ++ by integers.

  CODE ==> UnivariateLaurentSeriesConstructor(Coef,UTS) add

    variable x == var

    center   x == cen

    coerce(v:Variable(var)) ==
      zero? cen => monomial(1,1)
      monomial(1,1) + monomial(cen,0)

    differentiate(x:%,v:Variable(var)) == differentiate x

    if Coef has Algebra Fraction Integer then

      integrate(x:%,v:Variable(var)) == integrate x