This file is indexed.

/usr/share/axiom-20170501/src/algebra/UNIFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
)abbrev package UNIFACT UnivariateFactorize
++ Author: Patrizia Gianni
++ Date Created: ???
++ Date Last Updated: December 1993
++ Description:
++ Package for the factorization of univariate polynomials with integer
++ coefficients. The factorization is done by "lifting" (HENSEL) the
++ factorization over a finite field.

UnivariateFactorize(ZP) : SIG == CODE where
  Z ==> Integer
  ZP : UnivariatePolynomialCategory Z

  PI        ==>  PositiveInteger
  NNI       ==>  NonNegativeInteger
  SUPZ      ==>  SparseUnivariatePolynomial Z
  FR        ==>  Factored ZP
  fUnion    ==>  Union("nil", "sqfr", "irred", "prime")
  FFE       ==>  Record(flg:fUnion, fctr:ZP, xpnt:Z)
  ParFact   ==>  Record(irr: ZP,pow: Z)
  FinalFact ==>  Record(contp: Z,factors:List(ParFact))

  SIG ==> with

    factor : ZP -> FR
      ++ factor(m) returns the factorization of m

    factorSquareFree : ZP -> FR
      ++ factorSquareFree(m) returns the factorization of m square free
      ++ polynomial

    henselFact : (ZP,Boolean) -> FinalFact
      ++ henselFact(m,flag) returns the factorization of m,
      ++ FinalFact is a Record s.t. FinalFact.contp=content m,
      ++ FinalFact.factors=List of irreducible factors
      ++ of m with exponent , if flag =true the polynomial is
      ++ assumed square free.

  CODE ==> add

                 --- local functions ---

     henselfact  :           ZP      -> List(ZP)
     quadratic   :           ZP      -> List(ZP)
     remp        :        (Z, PI)    -> Z
     negShiftz   :        (Z, PI)    -> Z
     negShiftp   :        (ZP,PI)    -> ZP
     bound       :           ZP      -> PI
     choose      :           ZP      -> FirstStep
     eisenstein  :           ZP      -> Boolean
     isPowerOf2  :           Z       -> Boolean
     subMinusX   :          SUPZ     -> ZP
     sqroot      :           Z       -> Z

                 ---   declarations  ---
     CYC       ==> CyclotomicPolynomialPackage()
     DDRecord  ==> Record(factor: ZP,degree: Z)
     DDList    ==> List DDRecord
     FirstStep ==> Record(prime:PI,factors:DDList)
     ContPrim  ==> Record(cont: Z,prim: ZP)

     import GeneralHenselPackage(Z,ZP)
     import ModularDistinctDegreeFactorizer ZP


     factor(m: ZP) ==
       flist := henselFact(m,false)
       ctp:=unitNormal flist.contp
       makeFR((ctp.unit)::ZP,cons(["nil",ctp.canonical::ZP,1$Z]$FFE,
                      [["prime",u.irr,u.pow]$FFE for u in flist.factors]))

     factorSquareFree(m: ZP) ==
       flist := henselFact(m,true)
       ctp:=unitNormal flist.contp
       makeFR((ctp.unit)::ZP,cons(["nil",ctp.canonical::ZP,1$Z]$FFE,
                     [["prime",u.irr,u.pow]$FFE for u in flist.factors]))


     -- Integer square root: returns 0 if t is non-positive
     sqroot(t: Z): Z  ==
      t <= 0 => 0
      s:Integer:=t::Integer
      s:=approxSqrt(s)$IntegerRoots(Integer)
      t:=s::Z
      t

     -- Eisenstein criterion: returns true if polynomial is
     -- irreducible. Result of false in inconclusive.
     eisenstein(m : ZP): Boolean ==
       -- calculate the content of the terms after the first
       c := content reductum m
       c = 0 => false
       c = 1 => false
       -- factor the content
       -- if there is a prime in the factorization that does not divide
       -- the leading term and appears to multiplicity 1, and the square
       -- of this does not divide the last coef, return true.
       -- Otherwise reurn false.
       lead := leadingCoefficient m
       trail := lead
       m := reductum m
       while m ^= 0 repeat
         trail := leadingCoefficient m
         m:= reductum m
       fc := factor(c) :: Factored(Z)
       for r in factors fc repeat
         if (r.exponent = 1) and (0 ^= (lead rem r.factor)) and
           (0 ^= (trail rem (r.factor ** 2))) then return true
       false

     negShiftz(n: Z,Modulus:PI): Z ==
       if n < 0 then n := n+Modulus
       n > (Modulus quo 2) => n-Modulus
       n

     negShiftp(pp: ZP,Modulus:PI): ZP ==
       map(x +-> negShiftz(x,Modulus),pp)

     -- Choose the bound for the coefficients of factors
     bound(m: ZP):PI ==
       nm,nmq2,lcm,bin0,bin1:NNI
       cbound,j : PI
       k:NNI
       lcm := abs(leadingCoefficient m)::NNI
       nm := (degree m)::NNI
       nmq2:NNI := nm quo 2
       norm: Z := sqroot(+/[coefficient(m,k)**2 for k in 0..nm])
       if nmq2^=1 then nm := (nmq2-1):NNI
       else nm := nmq2
       bin0 := nm
       cbound := (bin0*norm+lcm)::PI
       for i in 2..(nm-1)::NNI repeat
         bin1 := bin0
         bin0 := (bin0*(nm+1-i):NNI) quo i
         j := (bin0*norm+bin1*lcm)::PI
         if cbound<j then cbound := j
       (2*cbound*lcm)::PI -- adjusted by lcm to prepare for exquo in ghensel

     remp(t: Z,q:PI): Z == ((t := t rem q)<0 => t+q ;t)

     numFactors(ddlist:DDList): Z ==
       ans: Z := 0
       for dd in ddlist repeat
         (d := degree(dd.factor)) = 0 => nil
         ans := ans + ((d pretend Z) exquo dd.degree):: Z
       ans

     -- select the prime,try up to 4 primes,
     -- choose the one yielding the fewest factors, but stopping if
     -- fewer than 9 factors
     choose(m: ZP):FirstStep ==
       qSave:PI := 1
       ddSave:DDList := []
       numberOfFactors: Z := 0
       lcm := leadingCoefficient m
       k: Z := 1
       ddRep := 5
       disc:ZP:=0
       q:PI:=2
       while k<ddRep repeat
         -- q must be a new prime number at each iteration
         q:=nextPrime(q)$IntegerPrimesPackage(Z) pretend PI
         (rr:=lcm rem q) = 0$Z => "next prime"
         disc:=gcd(m,differentiate m,q)
         (degree disc)^=0 => "next prime"
         k := k+1
         newdd := ddFact(m,q)
         ((n := numFactors(newdd)) < 9) =>
           ddSave := newdd
           qSave := q
           k := 5
         (numberOfFactors = 0) or (n < numberOfFactors) =>
           ddSave := newdd
           qSave := q
           numberOfFactors := n
       [qSave,ddSave]$FirstStep

     -- Find the factors of m,primitive, square-free, with lc positive
     -- and mindeg m = 0
     henselfact1(m: ZP):List(ZP) ==
      zero? degree m =>
          (m = 1) => []
          [m]
      selected := choose(m)
      (numFactors(selected.factors) = 1$Z) => [m]
      q := selected.prime
      fl := separateFactors(selected.factors,q)
      --choose the bound
      cbound := bound(m)
      completeHensel(m,fl,q,cbound)

     -- check for possible degree reduction
     -- could use polynomial decomposition ?
     henselfact(m: ZP):List ZP ==
      deggcd:=degree m
      mm:= m
      while not zero? mm _
        repeat (deggcd:=gcd(deggcd, degree mm); mm:=reductum mm)
      deggcd>1 and deggcd<degree m =>
         faclist := henselfact1(divideExponents(m, deggcd)::ZP)
         "append"/[henselfact1 multiplyExponents(mm, deggcd) for mm in faclist]
      henselfact1 m

     quadratic(m: ZP):List(ZP) ==
       d,d2: Z
       d := coefficient(m,1)**2-4*coefficient(m,0)*coefficient(m,2)
       d2 := sqroot(d)
       (d-d2**2)^=0 => [m]
       alpha: Z := coefficient(m,1)+d2
       beta: Z := 2*coefficient(m,2)
       d := gcd(alpha,beta)
       if d ^=1 then
         alpha := alpha quo d
         beta := beta quo d
       m0: ZP := monomial(beta,1)+monomial(alpha,0)
       cons(m0,[(m exquo m0):: ZP])

     isPowerOf2(n : Z): Boolean ==
       n = 1 => true
       qr : Record(quotient: Z, remainder: Z) := divide(n,2)
       qr.remainder = 1 => false
       isPowerOf2 qr.quotient

     subMinusX(supPol : SUPZ): ZP ==
       minusX : SUPZ := monomial(-1,1)$SUPZ
       (elt(supPol,minusX)$SUPZ) : ZP

--   Factorize the polynomial m, test=true if m is known to be
--   square-free, false otherwise.
--   FinalFact.contp=content m, FinalFact.factors=List of irreducible
--   factors with exponent .
     henselFact(m: ZP,test:Boolean):FinalFact ==
      factorlist : List(ParFact) := []
      c : Z
      -- make m primitive
      c := content m
      m := (m exquo c)::ZP
      -- make the lc m positive
      if leadingCoefficient m < 0 then
        c := -c
        m := -m
      -- is x**d factor of m?
      if (d := minimumDegree m) >0 then
        m := (monicDivide(m,monomial(1,d))).quotient
        factorlist := [[monomial(1,1),d]$ParFact]
      d := degree m
      -- is m constant?
      d=0 => [c,factorlist]$FinalFact
      -- is m linear?
      d=1 => [c,cons([m,1]$ParFact,factorlist)]$FinalFact
      -- does m satisfy Eisenstein's criterion?
      eisenstein m => [c,cons([m,1]$ParFact,factorlist)]$FinalFact
      lcPol : ZP := leadingCoefficient(m) :: ZP
      -- is m cyclotomic (x**n - 1)?
      -lcPol = reductum(m) =>    -- if true, both will = 1
        for fac in
          (cyclotomicDecomposition(degree m)$CYC : List ZP) repeat
            factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is m odd cyclotomic (x**(2*n+1) + 1)?
      odd?(d) and (lcPol = reductum(m)) =>
        for sfac in cyclotomicDecomposition(degree m)$CYC repeat
           fac:=subMinusX sfac
           if leadingCoefficient fac < 0 then fac := -fac
           factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is the poly of the form x**n + 1 with n a power of 2?
      -- if so, then irreducible
      isPowerOf2(d) and (lcPol = reductum(m)) =>
        factorlist := cons([m,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is m quadratic?
      d=2 =>
       lfq:List(ZP) := quadratic m
       #lfq=1 => [c,cons([lfq.first,1]$ParFact,factorlist)]$FinalFact
       (lf0,lf1) := (lfq.first,second lfq)
       if lf0=lf1 then factorlist := cons([lf0,2]$ParFact,factorlist)
       else factorlist := append([[v,1]$ParFact for v in lfq],factorlist)
       [c,factorlist]$FinalFact
      -- m is square-free
      test =>
        fln := henselfact(m)
        [c,append(factorlist,[[pf,1]$ParFact for pf in fln])]$FinalFact
      -- find the square-free decomposition of m
      irrFact := squareFree(m)
      llf := factors irrFact
      -- factorize the square-free primitive terms
      for l1 in llf repeat
        d1 := l1.exponent
        pol := l1.factor
        degree pol=1 => factorlist := cons([pol,d1]$ParFact,factorlist)
        degree pol=2 =>
          fln := quadratic(pol)
          factorlist := append([[pf,d1]$ParFact for pf in fln],factorlist)
        fln := henselfact(pol)
        factorlist := append([[pf,d1]$ParFact for pf in fln],factorlist)
      [c,factorlist]$FinalFact