/usr/share/axiom-20170501/src/algebra/UPOLYC.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | )abbrev category UPOLYC UnivariatePolynomialCategory
++ Description:
++ The category of univariate polynomials over a ring R.
++ No particular model is assumed - implementations can be either
++ sparse or dense.
UnivariatePolynomialCategory(R) : Category == SIG where
R : Ring
RC ==> PolynomialCategory(R, NonNegativeInteger, SingletonAsOrderedSet)
ELT1 ==> Eltable(R,R)
ELT2 ==> Eltable(%,%)
DR ==> DifferentialRing
DE ==> DifferentialExtension(R)
SIG ==> Join(RC,ELT1,ELT2,DR,DE) with
vectorise : (%,NonNegativeInteger) -> Vector R
++ vectorise(p, n) returns \spad{[a0,...,a(n-1)]} where
++ \spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms.
++ The degree of polynomial p can be different from \spad{n-1}.
++
++X t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6
++X t2:=vectorise(t1,4)
unvectorise : Vector R -> %
++ unvectorise(v) returns the polynomial which has for coefficients the
++ entries of v in the increasing order.
++
++X t1:UP(x,FRAC(INT)):=3*x^3+4*x^2+5*x+6
++X t2:=vectorise(t1,4)
++X t3:UP(x,FRAC(INT)):=unvectorise(t2)
makeSUP : % -> SparseUnivariatePolynomial R
++ makeSUP(p) converts the polynomial p to be of type
++ SparseUnivariatePolynomial over the same coefficients.
unmakeSUP : SparseUnivariatePolynomial R -> %
++ unmakeSUP(sup) converts sup of type
++ \spadtype{SparseUnivariatePolynomial(R)}
++ to be a member of the given type.
++ Note that converse of makeSUP.
multiplyExponents : (%,NonNegativeInteger) -> %
++ multiplyExponents(p,n) returns a new polynomial resulting from
++ multiplying all exponents of the polynomial p by the non negative
++ integer n.
divideExponents : (%,NonNegativeInteger) -> Union(%,"failed")
++ divideExponents(p,n) returns a new polynomial resulting from
++ dividing all exponents of the polynomial p by the non negative
++ integer n, or "failed" if some exponent is not exactly divisible
++ by n.
monicDivide : (%,%) -> Record(quotient:%,remainder:%)
++ monicDivide(p,q) divide the polynomial p by the monic polynomial q,
++ returning the pair \spad{[quotient, remainder]}.
++ Error: if q isn't monic.
-- These three are for Karatsuba
karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient:%,remainder:%)
++ \spad{karatsubaDivide(p,n)} returns the same as
++ \spad{monicDivide(p,monomial(1,n))}
shiftRight : (%,NonNegativeInteger) -> %
++ \spad{shiftRight(p,n)} returns
++ \spad{monicDivide(p,monomial(1,n)).quotient}
shiftLeft : (%,NonNegativeInteger) -> %
++ \spad{shiftLeft(p,n)} returns \spad{p * monomial(1,n)}
pseudoRemainder : (%,%) -> %
++ pseudoRemainder(p,q) = r, for polynomials p and q, returns the
++ remainder when
++ \spad{p' := p*lc(q)**(deg p - deg q + 1)}
++ is pseudo right-divided by q, \spad{p' = s q + r}.
differentiate : (%, R -> R, %) -> %
++ differentiate(p, d, x') extends the R-derivation d to an
++ extension D in \spad{R[x]} where Dx is given by x', and
++ returns \spad{Dp}.
if R has StepThrough then StepThrough
if R has CommutativeRing then
discriminant : % -> R
++ discriminant(p) returns the discriminant of the polynomial p.
resultant : (%,%) -> R
++ resultant(p,q) returns the resultant of the polynomials p and q.
if R has IntegralDomain then
Eltable(Fraction %, Fraction %)
elt : (Fraction %, Fraction %) -> Fraction %
++ elt(a,b) evaluates the fraction of univariate polynomials
++ \spad{a} with the distinguished variable replaced by b.
order : (%, %) -> NonNegativeInteger
++ order(p, q) returns the largest n such that \spad{q**n}
++ divides polynomial p
++ the order of \spad{p(x)} at \spad{q(x)=0}.
subResultantGcd : (%,%) -> %
++ subResultantGcd(p,q) computes the gcd of the polynomials p
++ and q using the SubResultant GCD algorithm.
composite : (%, %) -> Union(%, "failed")
++ composite(p, q) returns h if \spad{p = h(q)}, and "failed"
++ no such h exists.
composite : (Fraction %, %) -> Union(Fraction %, "failed")
++ composite(f, q) returns h if f = h(q), and "failed" is
++ no such h exists.
pseudoQuotient : (%,%) -> %
++ pseudoQuotient(p,q) returns r, the quotient when
++ \spad{p' := p*lc(q)**(deg p - deg q + 1)}
++ is pseudo right-divided by q, \spad{p' = s q + r}.
pseudoDivide : (%, %) -> Record(coef:R, quotient: %, remainder:%)
++ pseudoDivide(p,q) returns \spad{[c, q, r]}, when
++ \spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p}
++ is pseudo right-divided by q, \spad{p' = s q + r}.
if R has GcdDomain then
separate : (%, %) -> Record(primePart:%, commonPart: %)
++ separate(p, q) returns \spad{[a, b]} such that polynomial
++ \spad{p = a b} and \spad{a} is relatively prime to q.
if R has Field then
EuclideanDomain
additiveValuation
++ euclideanSize(a*b) = euclideanSize(a) + euclideanSize(b)
elt : (Fraction %, R) -> R
++ elt(a,r) evaluates the fraction of univariate polynomials
++ \spad{a} with the distinguished variable replaced by the
++ constant r.
if R has Algebra Fraction Integer then
integrate : % -> %
++ integrate(p) integrates the univariate polynomial p with respect
++ to its distinguished variable.
add
pp,qq: SparseUnivariatePolynomial %
variables(p) ==
zero? p or zero?(degree p) => []
[create()]
degree(p:%,v:SingletonAsOrderedSet) == degree p
totalDegree(p:%,lv:List SingletonAsOrderedSet) ==
empty? lv => 0
totalDegree p
degree(p:%,lv:List SingletonAsOrderedSet) ==
empty? lv => []
[degree p]
eval(p:%,lv: List SingletonAsOrderedSet,lq: List %):% ==
empty? lv => p
not empty? rest lv => _
error "can only eval a univariate polynomial once"
eval(p,first lv,first lq)$%
eval(p:%,v:SingletonAsOrderedSet,q:%):% == p(q)
eval(p:%,lv: List SingletonAsOrderedSet,lr: List R):% ==
empty? lv => p
not empty? rest lv => _
error "can only eval a univariate polynomial once"
eval(p,first lv,first lr)$%
eval(p:%,v:SingletonAsOrderedSet,r:R):% == p(r)::%
eval(p:%,le:List Equation %):% ==
empty? le => p
not empty? rest le => _
error "can only eval a univariate polynomial once"
mainVariable(lhs first le) case "failed" => p
p(rhs first le)
mainVariable(p:%) ==
zero? degree p => "failed"
create()$SingletonAsOrderedSet
minimumDegree(p:%,v:SingletonAsOrderedSet) == minimumDegree p
minimumDegree(p:%,lv:List SingletonAsOrderedSet) ==
empty? lv => []
[minimumDegree p]
monomial(p:%,v:SingletonAsOrderedSet,n:NonNegativeInteger) ==
mapExponents(x1+->x1+n,p)
coerce(v:SingletonAsOrderedSet):% == monomial(1,1)
makeSUP p ==
zero? p => 0
monomial(leadingCoefficient p,degree p) + makeSUP reductum p
unmakeSUP sp ==
zero? sp => 0
monomial(leadingCoefficient sp,degree sp) + unmakeSUP reductum sp
karatsubaDivide(p:%,n:NonNegativeInteger) == monicDivide(p,monomial(1,n))
shiftRight(p:%,n:NonNegativeInteger) ==
monicDivide(p,monomial(1,n)).quotient
shiftLeft(p:%,n:NonNegativeInteger) == p * monomial(1,n)
if R has PolynomialFactorizationExplicit then
PFBRU ==> PolynomialFactorizationByRecursionUnivariate(R,%)
pp,qq:SparseUnivariatePolynomial %
lpp:List SparseUnivariatePolynomial %
SupR ==> SparseUnivariatePolynomial R
sp:SupR
solveLinearPolynomialEquation(lpp,pp) ==
solveLinearPolynomialEquationByRecursion(lpp,pp)$PFBRU
factorPolynomial(pp) ==
factorByRecursion(pp)$PFBRU
factorSquareFreePolynomial(pp) ==
factorSquareFreeByRecursion(pp)$PFBRU
import FactoredFunctions2(SupR,S)
factor p ==
zero? degree p =>
ansR:=factor leadingCoefficient p
makeFR(unit(ansR)::%,
[[w.flg,w.fctr::%,w.xpnt] for w in factorList ansR])
map(unmakeSUP,factorPolynomial(makeSUP p)$R)
vectorise(p, n) ==
m := minIndex(v := new(n, 0)$Vector(R))
for i in minIndex v .. maxIndex v repeat
qsetelt_!(v, i, coefficient(p, (i - m)::NonNegativeInteger))
v
unvectorise(v : Vector R) : % ==
p : % := 0
for i in 1..#v repeat
p := p + monomial(v(i), (i-1)::NonNegativeInteger)
p
retract(p:%):R ==
zero? p => 0
zero? degree p => leadingCoefficient p
error "Polynomial is not of degree 0"
retractIfCan(p:%):Union(R, "failed") ==
zero? p => 0
zero? degree p => leadingCoefficient p
"failed"
if R has StepThrough then
init() == init()$R::%
nextItemInner: % -> Union(%,"failed")
nextItemInner(n) ==
zero? n => nextItem(0$R)::R::% -- assumed not to fail
zero? degree n =>
nn:=nextItem leadingCoefficient n
nn case "failed" => "failed"
nn::R::%
n1:=reductum n
n2:=nextItemInner n1 -- try stepping the reductum
n2 case % => monomial(leadingCoefficient n,degree n) + n2
1+degree n1 < degree n => -- there was a hole between lt n and n1
monomial(leadingCoefficient n,degree n)+
monomial(nextItem(init()$R)::R,1+degree n1)
n3:=nextItem leadingCoefficient n
n3 case "failed" => "failed"
monomial(n3,degree n)
nextItem(n) ==
n1:=nextItemInner n
n1 case "failed" => monomial(nextItem(init()$R)::R,1+degree(n))
n1
if R has GcdDomain then
content(p:%,v:SingletonAsOrderedSet) == content(p)::%
primeFactor: (%, %) -> %
primeFactor(p, q) ==
(p1 := (p exquo gcd(p, q))::%) = p => p
primeFactor(p1, q)
separate(p, q) ==
a := primeFactor(p, q)
[a, (p exquo a)::%]
if R has CommutativeRing then
differentiate(x:%, deriv:R -> R, x':%) ==
d:% := 0
while (dg := degree x) > 0 repeat
lc := leadingCoefficient x
d := d + x' * monomial(dg * lc, (dg - 1)::NonNegativeInteger)
+ monomial(deriv lc, dg)
x := reductum x
d + deriv(leadingCoefficient x)::%
else
ncdiff: (NonNegativeInteger, %) -> %
-- computes d(x**n) given dx = x', non-commutative case
ncdiff(n, x') ==
zero? n => 0
zero?(n1 := (n - 1)::NonNegativeInteger) => x'
x' * monomial(1, n1) + monomial(1, 1) * ncdiff(n1, x')
differentiate(x:%, deriv:R -> R, x':%) ==
d:% := 0
while (dg := degree x) > 0 repeat
lc := leadingCoefficient x
d := d + monomial(deriv lc, dg) + lc * ncdiff(dg, x')
x := reductum x
d + deriv(leadingCoefficient x)::%
differentiate(x:%, deriv:R -> R) == differentiate(x, deriv, 1$%)$%
differentiate(x:%) ==
d:% := 0
while (dg := degree x) > 0 repeat
d:=d+monomial(dg*leadingCoefficient x,(dg-1)::NonNegativeInteger)
x := reductum x
d
differentiate(x:%,v:SingletonAsOrderedSet) == differentiate x
if R has IntegralDomain then
elt(g:Fraction %, f:Fraction %) == ((numer g) f) / ((denom g) f)
pseudoQuotient(p, q) ==
(n := degree(p)::Integer - degree q + 1) < 1 => 0
((leadingCoefficient(q)**(n::NonNegativeInteger) * p
- pseudoRemainder(p, q)) exquo q)::%
pseudoDivide(p, q) ==
(n := degree(p)::Integer - degree q + 1) < 1 => [1, 0, p]
prem := pseudoRemainder(p, q)
lc := leadingCoefficient(q)**(n::NonNegativeInteger)
[lc,((lc*p - prem) exquo q)::%, prem]
composite(f:Fraction %, q:%) ==
(n := composite(numer f, q)) case "failed" => "failed"
(d := composite(denom f, q)) case "failed" => "failed"
n::% / d::%
composite(p:%, q:%) ==
ground? p => p
cqr := pseudoDivide(p, q)
ground?(cqr.remainder) and
((v := cqr.remainder exquo cqr.coef) case %) and
((u := composite(cqr.quotient, q)) case %) and
((w := (u::%) exquo cqr.coef) case %) =>
v::% + monomial(1, 1) * w::%
"failed"
elt(p:%, f:Fraction %) ==
zero? p => 0
ans:Fraction(%) := (leadingCoefficient p)::%::Fraction(%)
n := degree p
while not zero?(p:=reductum p) repeat
ans := ans * f ** (n - (n := degree p))::NonNegativeInteger +
(leadingCoefficient p)::%::Fraction(%)
zero? n => ans
ans * f ** n
order(p, q) ==
zero? p => error "order: arguments must be nonzero"
degree(q) < 1 => error "order: place must be non-trivial"
ans:NonNegativeInteger := 0
repeat
(u := p exquo q) case "failed" => return ans
p := u::%
ans := ans + 1
if R has GcdDomain then
squareFree(p:%) ==
squareFree(p)$UnivariatePolynomialSquareFree(R, %)
squareFreePart(p:%) ==
squareFreePart(p)$UnivariatePolynomialSquareFree(R, %)
if R has PolynomialFactorizationExplicit then
gcdPolynomial(pp,qq) ==
zero? pp => unitCanonical qq -- subResultantGcd can't handle 0
zero? qq => unitCanonical pp
unitCanonical(gcd(content (pp),content(qq))*
primitivePart
subResultantGcd(primitivePart pp,primitivePart qq))
squareFreePolynomial pp ==
squareFree(pp)$UnivariatePolynomialSquareFree(%,
SparseUnivariatePolynomial %)
if R has Field then
elt(f:Fraction %, r:R) == ((numer f) r) / ((denom f) r)
euclideanSize x ==
zero? x =>
error "euclideanSize called on 0 in Univariate Polynomial"
degree x
divide(x,y) ==
zero? y => error "division by 0 in Univariate Polynomials"
quot:=0
lc := inv leadingCoefficient y
while not zero?(x) and (degree x >= degree y) repeat
f:=lc*leadingCoefficient x
n:=(degree x - degree y)::NonNegativeInteger
quot:=quot+monomial(f,n)
x:=x-monomial(f,n)*y
[quot,x]
if R has Algebra Fraction Integer then
integrate p ==
ans:% := 0
while p ^= 0 repeat
l := leadingCoefficient p
d := 1 + degree p
ans := ans + inv(d::Fraction(Integer)) * monomial(l, d)
p := reductum p
ans
|