/usr/share/axiom-20170501/src/algebra/UPXSCONS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | )abbrev domain UPXSCONS UnivariatePuiseuxSeriesConstructor
++ Author: Clifton J. Williamson
++ Date Created: 9 May 1989
++ Date Last Updated: 30 November 1994
++ Description:
++ This package enables one to construct a univariate Puiseux series
++ domain from a univariate Laurent series domain. Univariate
++ Puiseux series are represented by a pair \spad{[r,f(x)]}, where r is
++ a positive rational number and \spad{f(x)} is a Laurent series.
++ This pair represents the Puiseux series \spad{f(x^r)}.
UnivariatePuiseuxSeriesConstructor(Coef,ULS) : SIG == CODE where
Coef : Ring
ULS : UnivariateLaurentSeriesCategory Coef
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
PI ==> PositiveInteger
RN ==> Fraction Integer
ST ==> Stream Coef
LTerm ==> Record(k:I,c:Coef)
PTerm ==> Record(k:RN,c:Coef)
ST2LP ==> StreamFunctions2(LTerm,PTerm)
ST2PL ==> StreamFunctions2(PTerm,LTerm)
SIG ==> UnivariatePuiseuxSeriesConstructorCategory(Coef,ULS)
CODE ==> add
Rep := Record(expon:RN,lSeries:ULS)
getExpon: % -> RN
getULS : % -> ULS
getExpon pxs == pxs.expon
getULS pxs == pxs.lSeries
puiseux(n,ls) == [n,ls]
laurentRep x == getULS x
rationalPower x == getExpon x
degree x == getExpon(x) * degree(getULS(x))
0 == puiseux(1,0)
1 == puiseux(1,1)
monomial(c,k) ==
k = 0 => c :: %
k < 0 => puiseux(-k,monomial(c,-1))
puiseux(k,monomial(c,1))
coerce(ls:ULS) == puiseux(1,ls)
coerce(r:Coef) == r :: ULS :: %
coerce(i:I) == i :: Coef :: %
laurentIfCan upxs ==
r := getExpon upxs
(denom r) = 1 =>
multiplyExponents(getULS upxs,numer(r) :: PI)
"failed"
laurent upxs ==
(uls := laurentIfCan upxs) case "failed" =>
error "laurent: Puiseux series has fractional powers"
uls :: ULS
multExp: (RN,LTerm) -> PTerm
multExp(r,lTerm) == [r * lTerm.k,lTerm.c]
terms upxs ==
map((t1:LTerm):PTerm+->multExp(getExpon upxs,t1),terms getULS upxs)$ST2LP
clearDen: (I,PTerm) -> LTerm
clearDen(n,lTerm) ==
(int := retractIfCan(n * lTerm.k)@Union(I,"failed")) case "failed" =>
error "series: inappropriate denominator"
[int :: I,lTerm.c]
series(n,stream) ==
str := map((t1:PTerm):LTerm +-> clearDen(n,t1),stream)$ST2PL
puiseux(1/n,series str)
--% normalizations
rewrite:(%,PI) -> %
rewrite(upxs,m) ==
-- rewrites a series in x**r as a series in x**(r/m)
puiseux((getExpon upxs)*(1/m),multiplyExponents(getULS upxs,m))
ratGcd: (RN,RN) -> RN
ratGcd(r1,r2) ==
-- if r1 = prod(p prime,p ** ep(r1)) and
-- if r2 = prod(p prime,p ** ep(r2)), then
-- ratGcd(r1,r2) = prod(p prime,p ** min(ep(r1),ep(r2)))
gcd(numer r1,numer r2) / lcm(denom r1,denom r2)
withNewExpon:(%,RN) -> %
withNewExpon(upxs,r) ==
rewrite(upxs,numer(getExpon(upxs)/r) pretend PI)
--% predicates
upxs1 = upxs2 ==
r1 := getExpon upxs1; r2 := getExpon upxs2
ls1 := getULS upxs1; ls2 := getULS upxs2
(r1 = r2) => (ls1 = ls2)
r := ratGcd(r1,r2)
m1 := numer(getExpon(upxs1)/r) pretend PI
m2 := numer(getExpon(upxs2)/r) pretend PI
multiplyExponents(ls1,m1) = multiplyExponents(ls2,m2)
pole? upxs == pole? getULS upxs
--% arithmetic
applyFcn:((ULS,ULS) -> ULS,%,%) -> %
applyFcn(op,pxs1,pxs2) ==
r1 := getExpon pxs1; r2 := getExpon pxs2
ls1 := getULS pxs1; ls2 := getULS pxs2
(r1 = r2) => puiseux(r1,op(ls1,ls2))
r := ratGcd(r1,r2)
m1 := numer(getExpon(pxs1)/r) pretend PI
m2 := numer(getExpon(pxs2)/r) pretend PI
puiseux(r,op(multiplyExponents(ls1,m1),multiplyExponents(ls2,m2)))
pxs1 + pxs2 == applyFcn((z1:ULS,z2:ULS):ULS+->z1 +$ULS z2,pxs1,pxs2)
pxs1 - pxs2 == applyFcn((z1:ULS,z2:ULS):ULS+->z1 -$ULS z2,pxs1,pxs2)
pxs1:% * pxs2:% == applyFcn((z1:ULS,z2:ULS):ULS+->z1 *$ULS z2,pxs1,pxs2)
pxs:% ** n:NNI == puiseux(getExpon pxs,getULS(pxs)**n)
recip pxs ==
rec := recip getULS pxs
rec case "failed" => "failed"
puiseux(getExpon pxs,rec :: ULS)
RATALG : Boolean := Coef has Algebra(Fraction Integer)
elt(upxs1:%,upxs2:%) ==
uls1 := laurentRep upxs1; uls2 := laurentRep upxs2
r1 := rationalPower upxs1; r2 := rationalPower upxs2
(n := retractIfCan(r1)@Union(Integer,"failed")) case Integer =>
puiseux(r2,uls1(uls2 ** r1))
RATALG =>
if zero? (coef := coefficient(uls2,deg := degree uls2)) then
deg := order(uls2,deg + 1000)
zero? (coef := coefficient(uls2,deg)) =>
error "elt: series with many leading zero coefficients"
-- a fractional power of a Laurent series may not be defined:
-- if f(x) = c * x**n + ..., then f(x) ** (p/q) will be defined
-- only if q divides n
b := lcm(denom r1,deg); c := b quo deg
mon : ULS := monomial(1,c)
uls2 := elt(uls2,mon) ** r1
puiseux(r2*(1/c),elt(uls1,uls2))
error "elt: rational powers not available for this coefficient domain"
if Coef has "**": (Coef,Integer) -> Coef and
Coef has "**": (Coef, RN) -> Coef then
eval(upxs:%,a:Coef) == eval(getULS upxs,a ** getExpon(upxs))
if Coef has Field then
pxs1:% / pxs2:% == applyFcn((z1:ULS,z2:ULS):ULS+->z1 /$ULS z2,pxs1,pxs2)
inv upxs ==
(invUpxs := recip upxs) case "failed" =>
error "inv: multiplicative inverse does not exist"
invUpxs :: %
--% values
variable upxs == variable getULS upxs
center upxs == center getULS upxs
coefficient(upxs,rn) ==
(denom(n := rn / getExpon upxs)) = 1 =>
coefficient(getULS upxs,numer n)
0
elt(upxs:%,rn:RN) == coefficient(upxs,rn)
--% other functions
roundDown: RN -> I
roundDown rn ==
-- returns the largest integer <= rn
(den := denom rn) = 1 => numer rn
n := (num := numer rn) quo den
positive?(num) => n
n - 1
roundUp: RN -> I
roundUp rn ==
-- returns the smallest integer >= rn
(den := denom rn) = 1 => numer rn
n := (num := numer rn) quo den
positive?(num) => n + 1
n
order upxs == getExpon upxs * order getULS upxs
order(upxs,r) ==
e := getExpon upxs
ord := order(getULS upxs, n := roundDown(r / e))
ord = n => r
ord * e
truncate(upxs,r) ==
e := getExpon upxs
puiseux(e,truncate(getULS upxs,roundDown(r / e)))
truncate(upxs,r1,r2) ==
e := getExpon upxs
puiseux(e,truncate(getULS upxs,roundUp(r1 / e),roundDown(r2 / e)))
complete upxs == puiseux(getExpon upxs,complete getULS upxs)
extend(upxs,r) ==
e := getExpon upxs
puiseux(e,extend(getULS upxs,roundDown(r / e)))
map(fcn,upxs) == puiseux(getExpon upxs,map(fcn,getULS upxs))
characteristic() == characteristic()$Coef
multiplyExponents(upxs:%,n:RN) ==
puiseux(n * getExpon(upxs),getULS upxs)
multiplyExponents(upxs:%,n:PI) ==
puiseux(n * getExpon(upxs),getULS upxs)
if Coef has "*": (Fraction Integer, Coef) -> Coef then
differentiate upxs ==
r := getExpon upxs
puiseux(r,differentiate getULS upxs) * monomial(r :: Coef,r-1)
if Coef has PartialDifferentialRing(Symbol) then
differentiate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => differentiate upxs
dcds := differentiate(center upxs,s)
map((z1:Coef):Coef+->differentiate(z1,s),upxs)
- dcds*differentiate(upxs)
if Coef has Algebra Fraction Integer then
coerce(r:RN) == r :: Coef :: %
ratInv: RN -> Coef
ratInv r ==
zero? r => 1
inv(r) :: Coef
integrate upxs ==
not zero? coefficient(upxs,-1) =>
error "integrate: series has term of order -1"
r := getExpon upxs
uls := getULS upxs
uls := multiplyCoefficients((z1:Integer):Coef+->ratInv(z1*r+1),uls)
monomial(1,1) * puiseux(r,uls)
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => integrate upxs
not entry?(s,variables center upxs)
=> map((z1:Coef):Coef +-> integrate(z1,s),upxs)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(upxs:%,s:Symbol) ==
(s = variable(upxs)) => integrate upxs
not entry?(s,variables center upxs) =>
map((z1:Coef):Coef +-> integrateWithOneAnswer(z1,s),upxs)
error "integrate: center is a function of variable of integration"
if Coef has Field then
(upxs:%) ** (q:RN) ==
num := numer q; den := denom q
den = 1 => upxs ** num
r := rationalPower upxs; uls := laurentRep upxs
deg := degree uls
if zero?(coef := coefficient(uls,deg)) then
deg := order(uls,deg + 1000)
zero?(coef := coefficient(uls,deg)) =>
error "power of series with many leading zero coefficients"
ulsPow := (uls * monomial(1,-deg)$ULS) ** q
puiseux(r,ulsPow) * monomial(1,deg*q*r)
applyUnary: (ULS -> ULS,%) -> %
applyUnary(fcn,upxs) ==
puiseux(rationalPower upxs,fcn laurentRep upxs)
exp upxs == applyUnary(exp,upxs)
log upxs == applyUnary(log,upxs)
sin upxs == applyUnary(sin,upxs)
cos upxs == applyUnary(cos,upxs)
tan upxs == applyUnary(tan,upxs)
cot upxs == applyUnary(cot,upxs)
sec upxs == applyUnary(sec,upxs)
csc upxs == applyUnary(csc,upxs)
asin upxs == applyUnary(asin,upxs)
acos upxs == applyUnary(acos,upxs)
atan upxs == applyUnary(atan,upxs)
acot upxs == applyUnary(acot,upxs)
asec upxs == applyUnary(asec,upxs)
acsc upxs == applyUnary(acsc,upxs)
sinh upxs == applyUnary(sinh,upxs)
cosh upxs == applyUnary(cosh,upxs)
tanh upxs == applyUnary(tanh,upxs)
coth upxs == applyUnary(coth,upxs)
sech upxs == applyUnary(sech,upxs)
csch upxs == applyUnary(csch,upxs)
asinh upxs == applyUnary(asinh,upxs)
acosh upxs == applyUnary(acosh,upxs)
atanh upxs == applyUnary(atanh,upxs)
acoth upxs == applyUnary(acoth,upxs)
asech upxs == applyUnary(asech,upxs)
acsch upxs == applyUnary(acsch,upxs)
|