This file is indexed.

/usr/share/axiom-20170501/src/algebra/UPXSSING.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
)abbrev domain UPXSSING UnivariatePuiseuxSeriesWithExponentialSingularity
++ Author: Clifton J. Williamson
++ Date Created: 4 August 1992
++ Date Last Updated: 27 August 1992
++ Description:
++ UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to
++ represent functions with essential singularities.  Objects in this
++ domain are sums, where each term in the sum is a univariate Puiseux
++ series times the exponential of a univariate Puiseux series.  Thus,
++ the elements of this domain are sums of expressions of the form
++ \spad{g(x) * exp(f(x))}, where g(x) is a univariate Puiseux series
++ and f(x) is a univariate Puiseux series with no terms of non-negative
++ degree.

UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) : 
 SIG == CODE where
  R : Join(OrderedSet,RetractableTo Integer,_
             LinearlyExplicitRingOver Integer,GcdDomain)
  FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
             FunctionSpace R)
  var : Symbol
  cen : FE

  B       ==> Boolean
  I       ==> Integer
  L       ==> List
  RN      ==> Fraction Integer
  UPXS    ==> UnivariatePuiseuxSeries(FE,var,cen)
  EXPUPXS ==> ExponentialOfUnivariatePuiseuxSeries(FE,var,cen)
  OFE     ==> OrderedCompletion FE
  Result  ==> Union(OFE,"failed")
  PxRec   ==> Record(k: Fraction Integer,c:FE)
  Term    ==> Record(%coef:UPXS,%expon:EXPUPXS,%expTerms:List PxRec)
    -- the %expTerms field is used to record the list of the terms (a 'term'
    -- records an exponent and a coefficient) in the exponent %expon
  TypedTerm ==> Record(%term:Term,%type:String)
    -- a term together with a String which tells whether it has an infinite,
    -- zero, or unknown limit as var -> cen+
  TRec    ==> Record(%zeroTerms: List Term,_
                     %infiniteTerms: List Term,_
                     %failedTerms: List Term,_
                     %puiseuxSeries: UPXS)
  SIGNEF  ==> ElementaryFunctionSign(R,FE)

  SIG ==> Join(FiniteAbelianMonoidRing(UPXS,EXPUPXS),IntegralDomain) with

    limitPlus : % -> Union(OFE,"failed")
      ++ limitPlus(f(var)) returns \spad{limit(var -> cen+,f(var))}.

    dominantTerm : % -> Union(TypedTerm,"failed")
      ++ dominantTerm(f(var)) returns the term that dominates the limiting
      ++ behavior of \spad{f(var)} as \spad{var -> cen+} together with a
      ++ \spadtype{String} which briefly describes that behavior.  The
      ++ value of the \spadtype{String} will be \spad{"zero"} (resp.
      ++ \spad{"infinity"}) if the term tends to zero (resp. infinity)
      ++ exponentially and will \spad{"series"} if the term is a
      ++ Puiseux series.

  CODE ==> PolynomialRing(UPXS,EXPUPXS) add

    makeTerm : (UPXS,EXPUPXS) -> Term
    coeff : Term -> UPXS
    exponent : Term -> EXPUPXS
    exponentTerms : Term -> List PxRec
    setExponentTerms_! : (Term,List PxRec) -> List PxRec
    computeExponentTerms_! : Term -> List PxRec
    terms : % -> List Term
    sortAndDiscardTerms: List Term -> TRec
    termsWithExtremeLeadingCoef : (L Term,RN,I) -> Union(L Term,"failed")
    filterByOrder: (L Term,(RN,RN) -> B) -> Record(%list:L Term,%order:RN)
    dominantTermOnList : (L Term,RN,I) -> Union(Term,"failed")
    iDominantTerm : L Term -> Union(Record(%term:Term,%type:String),"failed")

    retractIfCan f ==
      (numberOfMonomials f = 1) and (zero? degree f) => leadingCoefficient f
      "failed"

    recip f ==
      numberOfMonomials f = 1 =>
        monomial(inv leadingCoefficient f,- degree f)
      "failed"

    makeTerm(coef,expon) == [coef,expon,empty()]

    coeff term == term.%coef

    exponent term == term.%expon

    exponentTerms term == term.%expTerms

    setExponentTerms_!(term,list) == term.%expTerms := list

    computeExponentTerms_! term ==
      setExponentTerms_!(term,entries complete terms exponent term)

    terms f ==
      -- terms with a higher order singularity will appear closer to the
      -- beginning of the list because of the ordering in EXPPUPXS;
      -- no "expnonent terms" are computed by this function
      zero? f => empty()
      concat(makeTerm(leadingCoefficient f,degree f),terms reductum f)

    sortAndDiscardTerms termList ==
      -- 'termList' is the list of terms of some function f(var), ordered
      -- so that terms with a higher order singularity occur at the
      -- beginning of the list.
      -- This function returns lists of candidates for the "dominant
      -- term" in 'termList', the term which describes the
      -- asymptotic behavior of f(var) as var -> cen+.
      -- 'zeroTerms' will contain terms which tend to zero exponentially
      -- and contains only those terms with the lowest order singularity.
      -- 'zeroTerms' will be non-empty only when there are no terms of
      -- infinite or series type.
      -- 'infiniteTerms' will contain terms which tend to infinity
      -- exponentially and contains only those terms with the highest
      -- order singularity.
      -- 'failedTerms' will contain terms which have an exponential
      -- singularity, where we cannot say whether the limiting value
      -- is zero or infinity. Only terms with a higher order sigularity
      -- than the terms on 'infiniteList' are included.
      -- 'pSeries' will be a Puiseux series representing a term without an
      -- exponential singularity.  'pSeries' will be non-zero only when no
      -- other terms are known to tend to infinity exponentially
      zeroTerms : List Term := empty()
      infiniteTerms : List Term := empty()
      failedTerms : List Term := empty()
      -- we keep track of whether or not we've found an infinite term
      -- if so, 'infTermOrd' will be set to a negative value
      infTermOrd : RN := 0
      -- we keep track of whether or not we've found a zero term
      -- if so, 'zeroTermOrd' will be set to a negative value
      zeroTermOrd : RN := 0
      ord : RN := 0; pSeries : UPXS := 0  -- dummy values
      while not empty? termList repeat
        -- 'expon' is a Puiseux series
        expon := exponent(term := first termList)
        -- quit if there is an infinite term with a higher order singularity
        (ord := order(expon,0)) > infTermOrd => leave "infinite term dominates"
        -- if ord = 0, we've hit the end of the list
        (ord = 0) =>
          -- since we have a series term, don't bother with zero terms
          leave(pSeries := coeff(term); zeroTerms := empty())
        coef := coefficient(expon,ord)
        -- if we can't tell if the lowest order coefficient is positive or
        -- negative, we have a "failed term"
        (signum := sign(coef)$SIGNEF) case "failed" =>
          failedTerms := concat(term,failedTerms)
          termList := rest termList
        -- if the lowest order coefficient is positive, we have an
        -- "infinite term"
        (sig := signum :: Integer) = 1 =>
          infTermOrd := ord
          infiniteTerms := concat(term,infiniteTerms)
          -- since we have an infinite term, don't bother with zero terms
          zeroTerms := empty()
          termList := rest termList
        -- if the lowest order coefficient is negative, we have a
        -- "zero term" if there are no infinite terms and no failed
        -- terms, add the term to 'zeroTerms'
        if empty? infiniteTerms then
          zeroTerms :=
            ord = zeroTermOrd => concat(term,zeroTerms)
            zeroTermOrd := ord
            list term
        termList := rest termList
      -- reverse "failed terms" so that higher order singularities
      -- appear at the beginning of the list
      [zeroTerms,infiniteTerms,reverse_! failedTerms,pSeries]

    termsWithExtremeLeadingCoef(termList,ord,signum) ==
      -- 'termList' consists of terms of the form [g(x),exp(f(x)),...];
      -- when 'signum' is +1 (resp. -1), this function filters 'termList'
      -- leaving only those terms such that coefficient(f(x),ord) is
      -- maximal (resp. minimal)
      while (coefficient(exponent first termList,ord) = 0) repeat
        termList := rest termList
      empty? termList => error "UPXSSING: can't happen"
      coefExtreme := coefficient(exponent first termList,ord)
      outList := list first termList; termList := rest termList
      for term in termList repeat
        (coefDiff := coefficient(exponent term,ord) - coefExtreme) = 0 =>
          outList := concat(term,outList)
        (sig := sign(coefDiff)$SIGNEF) case "failed" => return "failed"
        (sig :: Integer) = signum => outList := list term
      outList

    filterByOrder(termList,predicate) ==
      -- 'termList' consists of terms of the form [g(x),exp(f(x)),expTerms],
      -- where 'expTerms' is a list containing some of the terms in the
      -- series f(x).
      -- The function filters 'termList' and, when 'predicate' is < (resp. >),
      -- leaves only those terms with the lowest (resp. highest) order term
      -- in 'expTerms'
      while empty? exponentTerms first termList repeat
        termList := rest termList
        empty? termList => error "UPXSING: can't happen"
      ordExtreme := (first exponentTerms first termList).k
      outList := list first termList
      for term in rest termList repeat
        not empty? exponentTerms term =>
          (ord := (first exponentTerms term).k) = ordExtreme =>
            outList := concat(term,outList)
          predicate(ord,ordExtreme) =>
            ordExtreme := ord
            outList := list term
      -- advance pointers on "exponent terms" on terms on 'outList'
      for term in outList repeat
        setExponentTerms_!(term,rest exponentTerms term)
      [outList,ordExtreme]

    dominantTermOnList(termList,ord0,signum) ==
      -- finds dominant term on 'termList'
      -- it is known that "exponent terms" of order < 'ord0' are
      -- the same for all terms on 'termList'
      newList := termsWithExtremeLeadingCoef(termList,ord0,signum)
      newList case "failed" => "failed"
      termList := newList :: List Term
      empty? rest termList => first termList
      filtered :=
        signum = 1 => filterByOrder(termList,(x,y) +-> x < y)
        filterByOrder(termList,(x,y) +-> x > y)
      termList := filtered.%list
      empty? rest termList => first termList
      dominantTermOnList(termList,filtered.%order,signum)

    iDominantTerm termList ==
      termRecord := sortAndDiscardTerms termList
      zeroTerms := termRecord.%zeroTerms
      infiniteTerms := termRecord.%infiniteTerms
      failedTerms := termRecord.%failedTerms
      pSeries := termRecord.%puiseuxSeries
      -- in future versions, we will deal with "failed terms"
      -- at present, if any occur, we cannot determine the limit
      not empty? failedTerms => "failed"
      not zero? pSeries => [makeTerm(pSeries,0),"series"]
      not empty? infiniteTerms =>
        empty? rest infiniteTerms => [first infiniteTerms,"infinity"]
        for term in infiniteTerms repeat computeExponentTerms_! term
        ord0 := order exponent first infiniteTerms
        (dTerm := dominantTermOnList(infiniteTerms,ord0,1)) case "failed" =>
          return "failed"
        [dTerm :: Term,"infinity"]
      empty? rest zeroTerms => [first zeroTerms,"zero"]
      for term in zeroTerms repeat computeExponentTerms_! term
      ord0 := order exponent first zeroTerms
      (dTerm := dominantTermOnList(zeroTerms,ord0,-1)) case "failed" =>
        return "failed"
      [dTerm :: Term,"zero"]

    dominantTerm f == iDominantTerm terms f

    limitPlus f ==
      -- list the terms occurring in 'f'; if there are none, then f = 0
      empty?(termList := terms f) => 0
      -- compute dominant term
      (tInfo := iDominantTerm termList) case "failed" => "failed"
      termInfo := tInfo :: Record(%term:Term,%type:String)
      domTerm := termInfo.%term
      (type := termInfo.%type) = "series" =>
        -- find limit of series term
        (ord := order(pSeries := coeff domTerm,1)) > 0 => 0
        coef := coefficient(pSeries,ord)
        member?(var,variables coef) => "failed"
        ord = 0 => coef :: OFE
        -- in the case of an infinite limit, we need to know the sign
        -- of the first non-zero coefficient
        (signum := sign(coef)$SIGNEF) case "failed" => "failed"
        (signum :: Integer) = 1 => plusInfinity()
        minusInfinity()
      type = "zero" => 0
      -- examine lowest order coefficient in series part of 'domTerm'
      ord := order(pSeries := coeff domTerm)
      coef := coefficient(pSeries,ord)
      member?(var,variables coef) => "failed"
      (signum := sign(coef)$SIGNEF) case "failed" => "failed"
      (signum :: Integer) = 1 => plusInfinity()
      minusInfinity()