This file is indexed.

/usr/share/axiom-20170501/src/algebra/URAGG.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
)abbrev category URAGG UnaryRecursiveAggregate
++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks
++ Date Created: August 87 through August 88
++ Date Last Updated: April 1991
++ Description:
++ A unary-recursive aggregate is a one where nodes may have either
++ 0 or 1 children.
++ This aggregate models, though not precisely, a linked
++ list possibly with a single cycle.
++ A node with one children models a non-empty list, with the
++ \spadfun{value} of the list designating the head, or \spadfun{first}, 
++ of the list, and the child designating the tail, or \spadfun{rest}, 
++ of the list. A node with no child then designates the empty list.
++ Since these aggregates are recursive aggregates, they may be cyclic.

UnaryRecursiveAggregate(S) : Category == SIG where
  S : Type

  SIG ==> RecursiveAggregate S with

    concat : (%,%) -> %
      ++ concat(u,v) returns an aggregate w consisting of the elements of u
      ++ followed by the elements of v.
      ++ Note that \axiom{v = rest(w,#a)}.
      ++
      ++X t1:=[1,2,3]
      ++X t2:=concat(t1,t1)
      ++X t1
      ++X t2
 
    concat : (S,%) -> %
      ++ concat(x,u) returns aggregate consisting of x followed by
      ++ the elements of u.
      ++ Note that if \axiom{v = concat(x,u)} then \axiom{x = first v}
      ++ and \axiom{u = rest v}.
      ++
      ++X t1:=[1,2,3]
      ++X t2:=concat(4,t1)
      ++X t1
      ++X t2
 
    first : % -> S
      ++ first(u) returns the first element of u
      ++ (equivalently, the value at the current node).
      ++
      ++X first [1,4,2,-6,0,3,5,4,2,3]
 
    elt : (%,"first") -> S
      ++ elt(u,"first") (also written: \axiom{u . first}) 
      ++ is equivalent to first u.
      ++
      ++X t1:=[1,2,3]
      ++X t1.first
 
    first : (%,NonNegativeInteger) -> %
      ++ first(u,n) returns a copy of the first n (\axiom{n >= 0}) 
      ++ elements of u.
      ++
      ++ first([1,4,2,-6,0,3,5,4,2,3],3)
 
    rest : % -> %
      ++ rest(u) returns an aggregate consisting of all but the first
      ++ element of u
      ++ (equivalently, the next node of u).
      ++
      ++X rest [1,4,2,-6,0,3,5,4,2,3]
 
    elt : (%,"rest") -> %
      ++ elt(%,"rest") (also written: \axiom{u.rest}) is
      ++ equivalent to \axiom{rest u}.
      ++
      ++X t1:=[1,2,3]
      ++X t1.rest
 
    rest : (%,NonNegativeInteger) -> %
      ++ rest(u,n) returns the \axiom{n}th (n >= 0) node of u.
      ++ Note that \axiom{rest(u,0) = u}.
      ++
      ++X rest([1,4,2,-6,0,3,5,4,2,3],3)
 
    last : % -> S
      ++ last(u) resturn the last element of u.
      ++ Note that for lists, \axiom{last(u)=u . (maxIndex u)=u . (# u - 1)}.
      ++
      ++X last [1,4,2,-6,0,3,5,4,2,3]
 
    elt : (%,"last") -> S
      ++ elt(u,"last") (also written: \axiom{u . last}) is equivalent 
      ++ to last u.
      ++
      ++X t1:=[1,2,3]
      ++X t1.last
 
    last : (%,NonNegativeInteger) -> %
      ++ last(u,n) returns a copy of the last n (\axiom{n >= 0}) nodes of u.
      ++ Note that \axiom{last(u,n)} is a list of n elements.
      ++
      ++X last([1,4,2,-6,0,3,5,4,2,3],3)
 
    tail : % -> %
      ++ tail(u) returns the last node of u.
      ++ Note that if u is \axiom{shallowlyMutable},
      ++ \axiom{setrest(tail(u),v) = concat(u,v)}.
      ++
      ++X tail [1,4,2,-6,0,3,5,4,2,3]
 
    second : % -> S
      ++ second(u) returns the second element of u.
      ++ Note that \axiom{second(u) = first(rest(u))}.
      ++
      ++X second [1,4,2,-6,0,3,5,4,2,3]
 
    third : % -> S
      ++ third(u) returns the third element of u.
      ++ Note that \axiom{third(u) = first(rest(rest(u)))}.
      ++
      ++X third [1,4,2,-6,0,3,5,4,2,3]
 
    cycleEntry : % -> %
      ++ cycleEntry(u) returns the head of a top-level cycle contained in
      ++ aggregate u, or \axiom{empty()} if none exists.
      ++
      ++X t1:=[1,2,3]
      ++X t2:=concat!(t1,t1)
      ++X cycleEntry t2
 
    cycleLength : % -> NonNegativeInteger
      ++ cycleLength(u) returns the length of a top-level cycle
      ++ contained  in aggregate u, or 0 is u has no such cycle.
      ++
      ++X t1:=[1,2,3]
      ++X t2:=concat!(t1,t1)
      ++X cycleLength t2
 
    cycleTail : % -> %
      ++ cycleTail(u) returns the last node in the cycle, or
      ++ empty if none exists.
      ++
      ++X t1:=[1,2,3]
      ++X t2:=concat!(t1,t1)
      ++X cycleTail t2
 
    if % has shallowlyMutable then
 
      concat_! : (%,%) -> %
        ++ concat!(u,v) destructively concatenates v to the end of u.
        ++ Note that \axiom{concat!(u,v) = setlast_!(u,v)}.
        ++
        ++X t1:=[1,2,3]
        ++X t2:=[4,5,6]
        ++X concat!(t1,t2)
        ++X t1
        ++X t2
 
      concat_! : (%,S) -> %
        ++ concat!(u,x) destructively adds element x to the end of u.
        ++ Note that \axiom{concat!(a,x) = setlast!(a,[x])}.
        ++
        ++X t1:=[1,2,3]
        ++X concat!(t1,7)
        ++X t1
 
      cycleSplit_! : % -> %
        ++ cycleSplit!(u) splits the aggregate by dropping off the cycle.
        ++ The value returned is the cycle entry, or nil if none exists.
        ++ For example, if \axiom{w = concat(u,v)} is the cyclic list where 
        ++ v is the head of the cycle, \axiom{cycleSplit!(w)} will drop v 
        ++ off w thus destructively changing w to u, and returning v.
        ++
        ++X t1:=[1,2,3]
        ++X t2:=concat!(t1,t1)
        ++X t3:=[1,2,3]
        ++X t4:=concat!(t3,t2)
        ++X t5:=cycleSplit!(t4)
        ++X t4
        ++X t5
 
      setfirst_! : (%,S) -> S
        ++ setfirst!(u,x) destructively changes the first element of a to x.
        ++
        ++X t1:=[1,2,3]
        ++X setfirst!(t1,7)
        ++X t1
 
      setelt : (%,"first",S) -> S
        ++ setelt(u,"first",x) (also written: \axiom{u.first := x}) is
        ++ equivalent to \axiom{setfirst!(u,x)}.
        ++
        ++X t1:=[1,2,3]
        ++X t1.first:=7
        ++X t1
 
      setrest_! : (%,%) -> %
        ++ setrest!(u,v) destructively changes the rest of u to v.
        ++
        ++X t1:=[1,2,3]
        ++X setrest!(t1,[4,5,6])
        ++X t1
 
      setelt : (%,"rest",%) -> %
        ++ setelt(u,"rest",v) (also written: \axiom{u.rest := v}) is 
        ++ equivalent to \axiom{setrest!(u,v)}.
        ++
        ++X t1:=[1,2,3]
        ++X t1.rest:=[4,5,6]
        ++X t1
 
      setlast_! : (%,S) -> S
        ++ setlast!(u,x) destructively changes the last element of u to x.
        ++
        ++X t1:=[1,4,2,-6,0,3,5,4,2,3]
        ++X setlast!(t1,7)
        ++X t1
 
      setelt : (%,"last",S) -> S
       ++ setelt(u,"last",x) (also written: \axiom{u.last := b})
       ++ is equivalent to \axiom{setlast!(u,v)}.
       ++
       ++X t1:=[1,4,2,-6,0,3,5,4,2,3]
       ++X t1.last := 7
       ++X t1
 
      split_! : (%,Integer) -> %
        ++ split!(u,n) splits u into two aggregates: \axiom{v = rest(u,n)}
        ++ and \axiom{w = first(u,n)}, returning \axiom{v}.
        ++ Note that afterwards \axiom{rest(u,n)} returns \axiom{empty()}.
        ++
        ++X t1:=[1,4,2,-6,0,3,5,4,2,3]
        ++X t2:=split!(t1,4)
        ++X t1
        ++X t2

   add

     cycleMax ==> 1000
   
     findCycle: % -> %
   
     elt(x, "first") == first x
 
     elt(x,  "last") == last x
 
     elt(x,  "rest") == rest x
 
     second x == first rest x
 
     third x == first rest rest x
 
     cyclic? x == not empty? x and not empty? findCycle x
 
     last x == first tail x
   
     nodes x ==
       l := empty()$List(%)
       while not empty? x repeat
         l := concat(x, l)
         x := rest x
       reverse_! l
   
     children x ==
       l := empty()$List(%)
       empty? x => l
       concat(rest x,l)
   
     leaf? x == empty? x
   
     value x ==
       empty? x => error "value of empty object"
       first x
   
     less?(l, n) ==
       i := n::Integer
       while i > 0 and not empty? l repeat (l := rest l; i := i - 1)
       i > 0
   
     more?(l, n) ==
       i := n::Integer
       while i > 0 and not empty? l repeat (l := rest l; i := i - 1)
       zero?(i) and not empty? l
   
     size?(l, n) ==
       i := n::Integer
       while not empty? l and i > 0 repeat (l := rest l; i := i - 1)
       empty? l and zero? i
   
     #x ==
       for k in 0.. while not empty? x repeat
         k = cycleMax and cyclic? x => error "cyclic list"
         x := rest x
       k
   
     tail x ==
       empty? x => error "empty list"
       y := rest x
       for k in 0.. while not empty? y repeat
         k = cycleMax and cyclic? x => error "cyclic list"
         y := rest(x := y)
       x
   
     findCycle x ==
       y := rest x
       while not empty? y repeat
         if eq?(x, y) then return x
         x := rest x
         y := rest y
         if empty? y then return y
         if eq?(x, y) then return y
         y := rest y
       y
   
     cycleTail x ==
       empty?(y := x := cycleEntry x) => x
       z := rest x
       while not eq?(x,z) repeat (y := z; z := rest z)
       y
   
     cycleEntry x ==
       empty? x => x
       empty?(y := findCycle x) => y
       z := rest y
       for l in 1.. while not eq?(y,z) repeat z := rest z
       y := x
       for k in 1..l repeat y := rest y
       while not eq?(x,y) repeat (x := rest x; y := rest y)
       x
   
     cycleLength x ==
       empty? x => 0
       empty?(x := findCycle x) => 0
       y := rest x
       for k in 1.. while not eq?(x,y) repeat y := rest y
       k
   
     rest(x, n) ==
       for i in 1..n repeat
         empty? x => error "Index out of range"
         x := rest x
       x
   
     if % has finiteAggregate then
 
       last(x, n) ==
         n > (m := #x) => error "index out of range"
         copy rest(x, (m - n)::NonNegativeInteger)
   
     if S has SetCategory then
 
       x = y ==
         eq?(x, y) => true
         for k in 0.. while not empty? x and not empty? y repeat
           k = cycleMax and cyclic? x => error "cyclic list"
           first x ^= first y => return false
           x := rest x
           y := rest y
         empty? x and empty? y
   
       node?(u, v) ==
         for k in 0.. while not empty? v repeat
           u = v => return true
           k = cycleMax and cyclic? v => error "cyclic list"
           v := rest v
         u=v
   
     if % has shallowlyMutable then
 
       setelt(x, "first", a) == setfirst_!(x, a)
 
       setelt(x,  "last", a) == setlast_!(x, a)
 
       setelt(x,  "rest", a) == setrest_!(x, a)
 
       concat(x:%, y:%) == concat_!(copy x, y)
   
       setlast_!(x, s) ==
         empty? x => error "setlast: empty list"
         setfirst_!(tail x, s)
         s
   
       setchildren_!(u,lv) ==
         #lv=1 => setrest_!(u, first lv)
         error "wrong number of children specified"
   
       setvalue_!(u,s) == setfirst_!(u,s)
   
       split_!(p, n) ==
         n < 1 => error "index out of range"
         p := rest(p, (n - 1)::NonNegativeInteger)
         q := rest p
         setrest_!(p, empty())
         q
   
       cycleSplit_! x ==
         empty?(y := cycleEntry x) or eq?(x, y) => y
         z := rest x
         while not eq?(z, y) repeat (x := z; z := rest z)
         setrest_!(x, empty())
         y