/usr/share/axiom-20170501/src/algebra/UTS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | )abbrev domain UTS UnivariateTaylorSeries
++ Author: Clifton J. Williamson
++ Date Created: 21 December 1989
++ Date Last Updated: 21 September 1993
++ Description:
++ Dense Taylor series in one variable
++ \spadtype{UnivariateTaylorSeries} is a domain representing Taylor
++ series in
++ one variable with coefficients in an arbitrary ring. The parameters
++ of the type specify the coefficient ring, the power series variable,
++ and the center of the power series expansion. For example,
++ \spadtype{UnivariateTaylorSeries}(Integer,x,3) represents
++ Taylor series in
++ \spad{(x - 3)} with \spadtype{Integer} coefficients.
UnivariateTaylorSeries(Coef,var,cen) : SIG == CODE where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
NNI ==> NonNegativeInteger
P ==> Polynomial Coef
RN ==> Fraction Integer
ST ==> Stream
STT ==> StreamTaylorSeriesOperations Coef
TERM ==> Record(k:NNI,c:Coef)
UP ==> UnivariatePolynomial(var,Coef)
SIG ==> UnivariateTaylorSeriesCategory(Coef) with
coerce : UP -> %
++\spad{coerce(p)} converts a univariate polynomial p in the variable
++\spad{var} to a univariate Taylor series in \spad{var}.
univariatePolynomial : (%,NNI) -> UP
++\spad{univariatePolynomial(f,k)} returns a univariate polynomial
++ consisting of the sum of all terms of f of degree \spad{<= k}.
coerce : Variable(var) -> %
++\spad{coerce(var)} converts the series variable \spad{var} into a
++ Taylor series.
differentiate : (%,Variable(var)) -> %
++ \spad{differentiate(f(x),x)} computes the derivative of
++ \spad{f(x)} with respect to \spad{x}.
lagrange : % -> %
++\spad{lagrange(g(x))} produces the Taylor series for \spad{f(x)}
++ where \spad{f(x)} is implicitly defined as \spad{f(x) = x*g(f(x))}.
lambert : % -> %
++\spad{lambert(f(x))} returns \spad{f(x) + f(x^2) + f(x^3) + ...}.
++ This function is used for computing infinite products.
++ \spad{f(x)} should have zero constant coefficient.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.
oddlambert : % -> %
++\spad{oddlambert(f(x))} returns \spad{f(x) + f(x^3) + f(x^5) + ...}.
++ \spad{f(x)} should have a zero constant coefficient.
++ This function is used for computing infinite products.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.
evenlambert : % -> %
++\spad{evenlambert(f(x))} returns \spad{f(x^2) + f(x^4) + f(x^6) + ...}.
++ \spad{f(x)} should have a zero constant coefficient.
++ This function is used for computing infinite products.
++ If \spad{f(x)} is a Taylor series with constant term 1, then
++ \spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}
generalLambert : (%,I,I) -> %
++\spad{generalLambert(f(x),a,d)} returns \spad{f(x^a) + f(x^(a + d)) +
++ f(x^(a + 2 d)) + ... }. \spad{f(x)} should have zero constant
++ coefficient and \spad{a} and d should be positive.
revert : % -> %
++ \spad{revert(f(x))} returns a Taylor series \spad{g(x)} such that
++ \spad{f(g(x)) = g(f(x)) = x}. Series \spad{f(x)} should have constant
++ coefficient 0 and 1st order coefficient 1.
multisect : (I,I,%) -> %
++\spad{multisect(a,b,f(x))} selects the coefficients of
++ \spad{x^((a+b)*n+a)}, and changes this monomial to \spad{x^n}.
invmultisect : (I,I,%) -> %
++\spad{invmultisect(a,b,f(x))} substitutes \spad{x^((a+b)*n)}
++ for \spad{x^n} and multiples by \spad{x^b}.
if Coef has Algebra Fraction Integer then
integrate : (%,Variable(var)) -> %
++ \spad{integrate(f(x),x)} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
CODE ==> InnerTaylorSeries(Coef) add
Rep := Stream Coef
--% creation and destruction of series
stream: % -> Stream Coef
stream x == x pretend Stream(Coef)
coerce(v:Variable(var)) ==
zero? cen => monomial(1,1)
monomial(1,1) + monomial(cen,0)
coerce(n:I) == n :: Coef :: %
coerce(r:Coef) == coerce(r)$STT
monomial(c,n) == monom(c,n)$STT
getExpon: TERM -> NNI
getExpon term == term.k
getCoef: TERM -> Coef
getCoef term == term.c
rec: (NNI,Coef) -> TERM
rec(expon,coef) == [expon,coef]
recs: (ST Coef,NNI) -> ST TERM
recs(st,n) == delay$ST(TERM)
empty? st => empty()
zero? (coef := frst st) => recs(rst st,n + 1)
concat(rec(n,coef),recs(rst st,n + 1))
terms x == recs(stream x,0)
recsToCoefs: (ST TERM,NNI) -> ST Coef
recsToCoefs(st,n) == delay
empty? st => empty()
term := frst st; expon := getExpon term
n = expon => concat(getCoef term,recsToCoefs(rst st,n + 1))
concat(0,recsToCoefs(st,n + 1))
series(st: ST TERM) == recsToCoefs(st,0)
stToPoly: (ST Coef,P,NNI,NNI) -> P
stToPoly(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToPoly(rst st,term,n + 1,n0)
polynomial(x,n) == stToPoly(stream x,(var :: P) - (cen :: P),0,n)
polynomial(x,n1,n2) ==
if n1 > n2 then (n1,n2) := (n2,n1)
stToPoly(rest(stream x,n1),(var :: P) - (cen :: P),n1,n2)
stToUPoly: (ST Coef,UP,NNI,NNI) -> UP
stToUPoly(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToUPoly(rst st,term,n + 1,n0)
univariatePolynomial(x,n) ==
stToUPoly(stream x,monomial(1,1)$UP - monomial(cen,0)$UP,0,n)
coerce(p:UP) ==
zero? p => 0
if not zero? cen then
p := p(monomial(1,1)$UP + monomial(cen,0)$UP)
st : ST Coef := empty()
oldDeg : NNI := degree(p) + 1
while not zero? p repeat
deg := degree p
delta := (oldDeg - deg - 1) :: NNI
for i in 1..delta repeat st := concat(0$Coef,st)
st := concat(leadingCoefficient p,st)
oldDeg := deg; p := reductum p
for i in 1..oldDeg repeat st := concat(0$Coef,st)
st
if Coef has coerce: Symbol -> Coef then
if Coef has "**": (Coef,NNI) -> Coef then
stToCoef: (ST Coef,Coef,NNI,NNI) -> Coef
stToCoef(st,term,n,n0) ==
(n > n0) or (empty? st) => 0
frst(st) * term ** n + stToCoef(rst st,term,n + 1,n0)
approximate(x,n) ==
stToCoef(stream x,(var :: Coef) - cen,0,n)
--% values
variable x == var
center s == cen
coefficient(x,n) ==
-- Cannot use elt! Should return 0 if stream doesn't have it.
u := stream x
while not empty? u and n > 0 repeat
u := rst u
n := (n - 1) :: NNI
empty? u or n ^= 0 => 0
frst u
elt(x:%,n:NNI) == coefficient(x,n)
--% functions
map(f,x) == map(f,x)$Rep
eval(x:%,r:Coef) == eval(stream x,r-cen)$STT
differentiate x == deriv(stream x)$STT
differentiate(x:%,v:Variable(var)) == differentiate x
if Coef has PartialDifferentialRing(Symbol) then
differentiate(x:%,s:Symbol) ==
(s = variable(x)) => differentiate x
map(y +-> differentiate(y,s),x)
- differentiate(center x,s)*differentiate(x)
multiplyCoefficients(f,x) == gderiv(f,stream x)$STT
lagrange x == lagrange(stream x)$STT
lambert x == lambert(stream x)$STT
oddlambert x == oddlambert(stream x)$STT
evenlambert x == evenlambert(stream x)$STT
generalLambert(x:%,a:I,d:I) == generalLambert(stream x,a,d)$STT
extend(x,n) == extend(x,n+1)$Rep
complete x == complete(x)$Rep
truncate(x,n) == first(stream x,n + 1)$Rep
truncate(x,n1,n2) ==
if n2 < n1 then (n1,n2) := (n2,n1)
m := (n2 - n1) :: NNI
st := first(rest(stream x,n1)$Rep,m + 1)$Rep
for i in 1..n1 repeat st := concat(0$Coef,st)
st
elt(x:%,y:%) == compose(stream x,stream y)$STT
revert x == revert(stream x)$STT
multisect(a,b,x) == multisect(a,b,stream x)$STT
invmultisect(a,b,x) == invmultisect(a,b,stream x)$STT
multiplyExponents(x,n) == invmultisect(n,0,x)
quoByVar x == (empty? x => 0; rst x)
if Coef has IntegralDomain then
unit? x == unit? coefficient(x,0)
if Coef has Field then
if Coef is RN then
(x:%) ** (s:Coef) == powern(s,stream x)$STT
else
(x:%) ** (s:Coef) == power(s,stream x)$STT
if Coef has Algebra Fraction Integer then
coerce(r:RN) == r :: Coef :: %
integrate x == integrate(0,stream x)$STT
integrate(x:%,v:Variable(var)) == integrate x
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) => map(y +-> integrate(y,s),x)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(I,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(x:%,s:Symbol) ==
(s = variable(x)) => integrate x
not entry?(s,variables center x) =>
map(y +-> integrateWithOneAnswer(y,s),x)
error "integrate: center is a function of variable of integration"
|