/usr/share/axiom-20170501/src/algebra/UTSCAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | )abbrev category UTSCAT UnivariateTaylorSeriesCategory
++ Author: Clifton J. Williamson
++ Date Created: 21 December 1989
++ Date Last Updated: 26 May 1994
++ Description:
++ \spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor
++ series in one variable.
UnivariateTaylorSeriesCategory(Coef) : Category == SIG where
Coef : Ring
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
OUT ==> OutputForm
RN ==> Fraction Integer
STTA ==> StreamTaylorSeriesOperations Coef
STTF ==> StreamTranscendentalFunctions Coef
STNC ==> StreamTranscendentalFunctionsNonCommutative Coef
Term ==> Record(k:NNI,c:Coef)
SIG ==> UnivariatePowerSeriesCategory(Coef,NNI) with
series : Stream Term -> %
++ \spad{series(st)} creates a series from a stream of non-zero terms,
++ where a term is an exponent-coefficient pair. The terms in the
++ stream should be ordered by increasing order of exponents.
coefficients : % -> Stream Coef
++ \spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream
++ of coefficients: \spad{[a0,a1,a2,...]}. The entries of the stream
++ may be zero.
series : Stream Coef -> %
++ \spad{series([a0,a1,a2,...])} is the Taylor series
++ \spad{a0 + a1 x + a2 x**2 + ...}.
quoByVar : % -> %
++ \spad{quoByVar(a0 + a1 x + a2 x**2 + ...)}
++ returns \spad{a1 + a2 x + a3 x**2 + ...}
++ Thus, this function substracts the constant term and divides by
++ the series variable. This function is used when Laurent series
++ are represented by a Taylor series and an order.
multiplyCoefficients : (I -> Coef,%) -> %
++ \spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))}
++ returns \spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}.
++ This function is used when Laurent series are represented by
++ a Taylor series and an order.
polynomial : (%,NNI) -> Polynomial Coef
++ \spad{polynomial(f,k)} returns a polynomial consisting of the sum
++ of all terms of f of degree \spad{<= k}.
polynomial : (%,NNI,NNI) -> Polynomial Coef
++ \spad{polynomial(f,k1,k2)} returns a polynomial consisting of the
++ sum of all terms of f of degree d with \spad{k1 <= d <= k2}.
if Coef has Field then
"**" : (%,Coef) -> %
++ \spad{f(x) ** a} computes a power of a power series.
++ When the coefficient ring is a field, we may raise a series
++ to an exponent from the coefficient ring provided that the
++ constant coefficient of the series is 1.
if Coef has Algebra Fraction Integer then
integrate : % -> %
++ \spad{integrate(f(x))} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate : (%,Symbol) -> %
++ \spad{integrate(f(x),y)} returns an anti-derivative of the
++ power series \spad{f(x)} with respect to the variable \spad{y}.
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrate : (%,Symbol) -> %
++ \spad{integrate(f(x),y)} returns an anti-derivative of
++ the power series \spad{f(x)} with respect to the variable
++ \spad{y}.
RadicalCategory
--++ We provide rational powers when we can divide coefficients
--++ by integers.
TranscendentalFunctionCategory
--++ We provide transcendental functions when we can divide
--++ coefficients by integers.
add
zero? x ==
empty? (coefs := coefficients x) => true
(zero? frst coefs) and (empty? rst coefs) => true
false
--% OutputForms
-- We provide defaulr output functions on UTSCAT using the functions
-- 'coefficients', 'center', and 'variable'.
factorials?: () -> Boolean
-- check a global Lisp variable
factorials?() == false
termOutput: (I,Coef,OUT) -> OUT
termOutput(k,c,vv) ==
-- creates a term c * vv ** k
k = 0 => c :: OUT
mon := (k = 1 => vv; vv ** (k :: OUT))
c = 1 => mon
c = -1 => -mon
(c :: OUT) * mon
showAll?: () -> Boolean
-- check a global Lisp variable
showAll?() == true
coerce(p:%):OUT ==
empty? (uu := coefficients p) => (0$Coef) :: OUT
var := variable p; cen := center p
vv :=
zero? cen => var :: OUT
paren(var :: OUT - cen :: OUT)
n : NNI ; count : NNI := _$streamCount$Lisp
l : L OUT := empty()
for n in 0..count while not empty? uu repeat
if frst(uu) ^= 0 then
l := concat(termOutput(n :: I,frst uu,vv),l)
uu := rst uu
if showAll?() then
for n in (count + 1).. while explicitEntries? uu and _
not eq?(uu,rst uu) repeat
if frst(uu) ^= 0 then
l := concat(termOutput(n :: I,frst uu,vv),l)
uu := rst uu
l :=
explicitlyEmpty? uu => l
eq?(uu,rst uu) and frst uu = 0 => l
concat(prefix("O" :: OUT,[vv ** (n :: OUT)]),l)
empty? l => (0$Coef) :: OUT
reduce("+",reverse_! l)
if Coef has Field then
(x:%) ** (r:Coef) == series power(r,coefficients x)$STTA
if Coef has Algebra Fraction Integer then
if Coef has CommutativeRing then
(x:%) ** (y:%) == series(coefficients x **$STTF coefficients y)
(x:%) ** (r:RN) == series powern(r,coefficients x)$STTA
exp x == series exp(coefficients x)$STTF
log x == series log(coefficients x)$STTF
sin x == series sin(coefficients x)$STTF
cos x == series cos(coefficients x)$STTF
tan x == series tan(coefficients x)$STTF
cot x == series cot(coefficients x)$STTF
sec x == series sec(coefficients x)$STTF
csc x == series csc(coefficients x)$STTF
asin x == series asin(coefficients x)$STTF
acos x == series acos(coefficients x)$STTF
atan x == series atan(coefficients x)$STTF
acot x == series acot(coefficients x)$STTF
asec x == series asec(coefficients x)$STTF
acsc x == series acsc(coefficients x)$STTF
sinh x == series sinh(coefficients x)$STTF
cosh x == series cosh(coefficients x)$STTF
tanh x == series tanh(coefficients x)$STTF
coth x == series coth(coefficients x)$STTF
sech x == series sech(coefficients x)$STTF
csch x == series csch(coefficients x)$STTF
asinh x == series asinh(coefficients x)$STTF
acosh x == series acosh(coefficients x)$STTF
atanh x == series atanh(coefficients x)$STTF
acoth x == series acoth(coefficients x)$STTF
asech x == series asech(coefficients x)$STTF
acsch x == series acsch(coefficients x)$STTF
else
(x:%) ** (y:%) == series(coefficients x **$STNC coefficients y)
(x:%) ** (r:RN) ==
coefs := coefficients x
empty? coefs =>
positive? r => 0
zero? r => error "0**0 undefined"
error "0 raised to a negative power"
not (frst coefs = 1) =>
error "**: constant coefficient should be 1"
coefs := concat(0,rst coefs)
onePlusX := monom(1,0)$STTA + $STTA monom(1,1)$STTA
ratPow := powern(r,onePlusX)$STTA
series compose(ratPow,coefs)$STTA
exp x == series exp(coefficients x)$STNC
log x == series log(coefficients x)$STNC
sin x == series sin(coefficients x)$STNC
cos x == series cos(coefficients x)$STNC
tan x == series tan(coefficients x)$STNC
cot x == series cot(coefficients x)$STNC
sec x == series sec(coefficients x)$STNC
csc x == series csc(coefficients x)$STNC
asin x == series asin(coefficients x)$STNC
acos x == series acos(coefficients x)$STNC
atan x == series atan(coefficients x)$STNC
acot x == series acot(coefficients x)$STNC
asec x == series asec(coefficients x)$STNC
acsc x == series acsc(coefficients x)$STNC
sinh x == series sinh(coefficients x)$STNC
cosh x == series cosh(coefficients x)$STNC
tanh x == series tanh(coefficients x)$STNC
coth x == series coth(coefficients x)$STNC
sech x == series sech(coefficients x)$STNC
csch x == series csch(coefficients x)$STNC
asinh x == series asinh(coefficients x)$STNC
acosh x == series acosh(coefficients x)$STNC
atanh x == series atanh(coefficients x)$STNC
acoth x == series acoth(coefficients x)$STNC
asech x == series asech(coefficients x)$STNC
acsch x == series acsch(coefficients x)$STNC
|