/usr/share/axiom-20170501/src/algebra/UTSODE.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | )abbrev package UTSODE UnivariateTaylorSeriesODESolver
++ Author: Stephen Watt (revised by Clifton J. Williamson)
++ Date Created: February 1988
++ Date Last Updated: 30 September 1993
++ Description:
++ Taylor series solutions of explicit ODE's.
++ This package provides Taylor series solutions to regular
++ linear or non-linear ordinary differential equations of
++ arbitrary order.
UnivariateTaylorSeriesODESolver(Coef,UTS) : SIG == CODE where
Coef : Algebra Fraction Integer
UTS : UnivariateTaylorSeriesCategory Coef
L ==> List
L2 ==> ListFunctions2
FN ==> (L UTS) -> UTS
ST ==> Stream Coef
YS ==> Y$ParadoxicalCombinatorsForStreams(Coef)
STT ==> StreamTaylorSeriesOperations(Coef)
SIG ==> with
stFunc1 : (UTS -> UTS) -> (ST -> ST)
++ stFunc1(f) is a local function exported due to compiler problem.
++ This function is of no interest to the top-level user.
stFunc2 : ((UTS,UTS) -> UTS) -> ((ST,ST) -> ST)
++ stFunc2(f) is a local function exported due to compiler problem.
++ This function is of no interest to the top-level user.
stFuncN : FN -> ((L ST) -> ST)
++ stFuncN(f) is a local function xported due to compiler problem.
++ This function is of no interest to the top-level user.
fixedPointExquo : (UTS,UTS) -> UTS
++ fixedPointExquo(f,g) computes the exact quotient of \spad{f} and
++ \spad{g} using a fixed point computation.
ode1 : ((UTS -> UTS),Coef) -> UTS
++ ode1(f,c) is the solution to \spad{y' = f(y)}
++ such that \spad{y(a) = c}.
ode2 : ((UTS, UTS) -> UTS,Coef,Coef) -> UTS
++ ode2(f,c0,c1) is the solution to \spad{y'' = f(y,y')} such that
++ \spad{y(a) = c0} and \spad{y'(a) = c1}.
ode : (FN,List Coef) -> UTS
++ ode(f,cl) is the solution to \spad{y<n>=f(y,y',..,y<n-1>)} such that
++ \spad{y<i>(a) = cl.i} for i in 1..n.
mpsode : (L Coef,L FN) -> L UTS
++ mpsode(r,f) solves the system of differential equations
++ \spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},
++ \spad{y[i](a) = r[i]} for i in 1..n.
CODE ==> add
stFunc1 f == s +-> coefficients f series(s)
stFunc2 f == (s1,s2) +-> coefficients f(series(s1),series(s2))
stFuncN f == ls +-> coefficients f map(series,ls)$ListFunctions2(ST,UTS)
import StreamTaylorSeriesOperations(Coef)
divloopre:(Coef,ST,Coef,ST,ST) -> ST
divloopre(hx,tx,hy,ty,c) == delay(concat(hx*hy,hy*(tx-(ty*c))))
divloop: (Coef,ST,Coef,ST) -> ST
divloop(hx,tx,hy,ty) == YS(s +-> divloopre(hx,tx,hy,ty,s))
sdiv:(ST,ST) -> ST
sdiv(x,y) == delay
empty? x => empty()
empty? y => error "stream division by zero"
hx := frst x; tx := rst x
hy := frst y; ty := rst y
zero? hy =>
zero? hx => sdiv(tx,ty)
error "stream division by zero"
rhy := recip hy
rhy case "failed" => error "stream division:no reciprocal"
divloop(hx,tx,rhy::Coef,ty)
fixedPointExquo(f,g) == series sdiv(coefficients f,coefficients g)
-- first order
ode1re: (ST -> ST,Coef,ST) -> ST
ode1re(f,c,y) == lazyIntegrate(c,f y)$STT
iOde1: ((ST -> ST),Coef) -> ST
iOde1(f,c) == YS(s +-> ode1re(f,c,s))
ode1(f,c) == series iOde1(stFunc1 f,c)
-- second order
ode2re: ((ST,ST)-> ST,Coef,Coef,ST) -> ST
ode2re(f,c0,c1,y)==
yi := lazyIntegrate(c1,f(y,deriv(y)$STT))$STT
lazyIntegrate(c0,yi)$STT
iOde2: ((ST,ST) -> ST,Coef,Coef) -> ST
iOde2(f,c0,c1) == YS(s +-> ode2re(f,c0,c1,s))
ode2(f,c0,c1) == series iOde2(stFunc2 f,c0,c1)
-- nth order
odeNre: (List ST -> ST,List Coef,List ST) -> List ST
odeNre(f,cl,yl) ==
-- yl is [y, y', ..., y<n>]
-- integrate [y',..,y<n>] to get [y,..,y<n-1>]
yil := [lazyIntegrate(c,y)$STT for c in cl for y in rest yl]
-- use y<n> = f(y,..,y<n-1>)
concat(yil,[f yil])
iOde: ((L ST) -> ST,List Coef) -> ST
iOde(f,cl) == first YS(ls +-> odeNre(f,cl,ls),#cl + 1)
ode(f,cl) == series iOde(stFuncN f,cl)
simulre:(L Coef,L ((L ST) -> ST),L ST) -> L ST
simulre(cst,lsf,c) ==
[lazyIntegrate(csti,lsfi concat(monom(1,1)$STT,c))_
for csti in cst for lsfi in lsf]
iMpsode:(L Coef,L ((L ST) -> ST)) -> L ST
iMpsode(cs,lsts) == YS(ls +-> simulre(cs,lsts,ls),# cs)
mpsode(cs,lsts) ==
stSol := iMpsode(cs,[stFuncN(lst) for lst in lsts])
map(series,stSol)$L2(ST,UTS)
|