This file is indexed.

/usr/share/axiom-20170501/src/algebra/XF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
)abbrev category XF ExtensionField
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 10 March 1991
++ Date Last Updated: 31 March 1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Description:
++ ExtensionField F is the category of fields which extend the field F

ExtensionField(F) : Category  == SIG where
  F : Field

  SIG ==> Join(Field,RetractableTo F,VectorSpace F) with

    if F has CharacteristicZero then CharacteristicZero

    if F has CharacteristicNonZero then FieldOfPrimeCharacteristic

    algebraic? : $ -> Boolean
      ++ algebraic?(a) tests whether an element \spad{a} is algebraic with
      ++ respect to the ground field F.

    transcendent? : $ -> Boolean
      ++ transcendent?(a) tests whether an element \spad{a} is transcendent
      ++ with respect to the ground field F.

    inGroundField? : $ -> Boolean
      ++ inGroundField?(a) tests whether an element \spad{a}
      ++ is already in the ground field F.

    degree : $ -> OnePointCompletion PositiveInteger
      ++ degree(a) returns the degree of minimal polynomial of an element
      ++ \spad{a} if \spad{a} is algebraic
      ++ with respect to the ground field F, and \spad{infinity} otherwise.

    extensionDegree : () -> OnePointCompletion PositiveInteger
      ++ extensionDegree() returns the degree of the field extension if the
      ++ extension is algebraic, and \spad{infinity} if it is not.

    transcendenceDegree : () -> NonNegativeInteger
      ++ transcendenceDegree() returns the transcendence degree of the
      ++ field extension, 0 if the extension is algebraic.

    if F has Finite then

      FieldOfPrimeCharacteristic

      Frobenius : $ -> $
        ++ Frobenius(a) returns \spad{a ** q} where q is the \spad{size()$F}.

      Frobenius : ($,NonNegativeInteger) -> $
        ++ Frobenius(a,s) returns \spad{a**(q**s)} where q is the size()$F.
   add

     algebraic?(a) == not infinite? (degree(a)@OnePointCompletion_
       (PositiveInteger))$OnePointCompletion(PositiveInteger)
 
     transcendent? a == infinite?(degree(a)@OnePointCompletion _
       (PositiveInteger))$OnePointCompletion(PositiveInteger)
 
     if F has Finite then
 
       Frobenius(a) == a ** size()$F
 
       Frobenius(a,s) == a ** (size()$F ** s)