This file is indexed.

/usr/share/axiom-20170501/src/algebra/XPBWPOLY.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
)abbrev domain XPBWPOLY XPBWPolynomial
++ Author: Michel Petitot (petitot@lifl.fr).
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Description:
++ This domain constructor implements polynomials in non-commutative
++ variables written in the Poincare-Birkhoff-Witt basis from the
++ Lyndon basis.
++ These polynomials can be used to compute Baker-Campbell-Hausdorff
++ relations. 

XPBWPolynomial(VarSet,R) : SIG == CODE where
  VarSet : OrderedSet
  R : CommutativeRing

  WORD   ==> OrderedFreeMonoid(VarSet)
  LWORD  ==> LyndonWord(VarSet)
  LWORDS ==> List LWORD
  BASIS  ==> PoincareBirkhoffWittLyndonBasis(VarSet)
  TERM   ==> Record(k:BASIS, c:R)
  LTERMS ==> List(TERM)
  LPOLY  ==> LiePolynomial(VarSet,R)  
  EX     ==> OutputForm
  XDPOLY ==> XDistributedPolynomial(VarSet,R)
  XRPOLY ==> XRecursivePolynomial(VarSet,R)
  TERM1  ==> Record(k:LWORD, c:R)
  NNI    ==> NonNegativeInteger
  I      ==> Integer
  RN     ==> Fraction(Integer)

  SIG ==> Join(XPolynomialsCat(VarSet,R), FreeModuleCat(R, BASIS)) with

    coerce : LPOLY -> $
      ++ \axiom{coerce(p)} returns \axiom{p}. 

    coerce : $ -> XDPOLY
      ++ \axiom{coerce(p)} returns \axiom{p} as a distributed polynomial. 

    coerce : $ -> XRPOLY
      ++ \axiom{coerce(p)} returns \axiom{p} as a recursive polynomial.

    LiePolyIfCan : $ -> Union(LPOLY,"failed")
      ++ \axiom{LiePolyIfCan(p)} return  \axiom{p} if \axiom{p} is a 
      ++ Lie polynomial.

    product : ($,$,NNI) -> $           -- produit tronque a l'ordre n
      ++ \axiom{product(a,b,n)} returns \axiom{a*b} (truncated up to 
      ++ order \axiom{n}).

    if R has Module(RN) then

       exp : ($,NNI) -> $
         ++ \axiom{exp(p,n)} returns the exponential of \axiom{p} 
         ++ (truncated up to order \axiom{n}).

       log : ($,NNI) -> $
         ++ \axiom{log(p,n)} returns the logarithm of \axiom{p}
         ++ (truncated up to order \axiom{n}).

  CODE ==> FreeModule1(R,BASIS) add

       import(TERM)

    -- Representation
       Rep:= LTERMS 

    -- local functions
       prod1: (BASIS, $) -> $
       prod2: ($, BASIS) -> $
       prod : (BASIS, BASIS) -> $

       prod11: (BASIS, $, NNI) -> $
       prod22: ($, BASIS, NNI) -> $

       outForm : TERM -> EX
       Dexpand : BASIS -> XDPOLY
       Rexpand : BASIS -> XRPOLY
       process : (List LWORD, LWORD, List LWORD) -> $
       mirror1 : BASIS -> $

    -- functions locales
       outForm t ==
           t.c =$R 1 => t.k :: EX
           t.k =$BASIS 1 => t.c :: EX
           t.c::EX * t.k ::EX

       prod1(b:BASIS, p:$):$ ==
         +/ [t.c * prod(b, t.k) for t in p]

       prod2(p:$, b:BASIS):$ ==
         +/ [t.c * prod(t.k, b) for t in p]
 
       prod11(b,p,n) ==
           limit: I := n -$I length b
           +/ [t.c * prod(b, t.k) for t in p| length(t.k) :: I <= limit]

       prod22(p,b,n) ==
           limit: I := n -$I length b
           +/ [t.c * prod(t.k, b) for t in p| length(t.k) :: I <= limit]

       prod(g,d) ==
         d = 1 => monom(g,1)
         g = 1 => monom(d,1)
         process(reverse listOfTerms g, first d, rest listOfTerms d)

       Dexpand b == 
         b = 1 => 1$XDPOLY
         */ [LiePoly(l)$LPOLY :: XDPOLY for l in listOfTerms b]

       Rexpand b ==
         b = 1 => 1$XRPOLY
         */ [LiePoly(l)$LPOLY :: XRPOLY for l in listOfTerms b]

       mirror1(b:BASIS):$ ==
         b = 1 => 1
         lp: LPOLY := LiePoly first b
         lp := mirror lp
         mirror1(rest b) * lp :: $

       process(gauche, x, droite) ==    -- algo du "collect process"
         null gauche => monom( cons(x, droite) pretend BASIS, 1$R)
         r1, r2 : $
         not lexico(first gauche, x) =>     -- cas facile !!!
           monom(append(reverse gauche, cons(x, droite)) pretend BASIS , 1$R)
         p: LPOLY := [first gauche , x]      -- on crochete !!!
         null droite =>
           r1 :=  +/ [t.c * process(rest gauche, t.k, droite) for t in _
                      listOfTerms p]
           r2 :=  process( rest gauche, x, list first gauche)
           r1 + r2 
         rd: List LWORD := rest droite; fd: LWORD := first droite
         r1 := +/ [t.c * process(list t.k, fd, rd) for t in  listOfTerms p] 
         r1 := +/[t.c * process(rest gauche, first t.k, rest listOfTerms(t.k))_
                  for t in  r1] 
         r2 := process([first gauche, x], fd, rd)
         r2 := +/[t.c * process(rest gauche, first t.k, rest listOfTerms(t.k))_
                  for t in  r2]
         r1 + r2

    -- definitions
       1 == monom(1$BASIS, 1$R)

       coerce(r:R):$ == [[1$BASIS , r]$TERM ]

       coerce(p:$):EX ==
         null p => (0$R) :: EX
         le : List EX := nil
         for rec in p repeat le := cons(outForm rec, le)
         reduce(_+, le)$List(EX)

       coerce(v: VarSet):$ == monom(v::BASIS , 1$R)
       coerce(p: LPOLY):$ ==
          [[t.k :: BASIS , t.c ]$TERM for t in listOfTerms p]

       coerce(p:$):XDPOLY ==
         +/ [t.c * Dexpand t.k for t in p]

       coerce(p:$):XRPOLY ==
         p = 0 => 0$XRPOLY
         +/ [t.c * Rexpand t.k for t in p]

       constant? p == (null p) or (leadingMonomial(p) =$BASIS 1)

       constant p == 
         null p => 0$R
         p.last.k = 1$BASIS => p.last.c
         0$R

       quasiRegular? p == (p=0) or (p.last.k ^= 1$BASIS)

       quasiRegular p == 
         p = 0 => p
         p.last.k = 1$BASIS => delete(p, maxIndex p)
         p
    
       x:$ * y:$ ==
         y = 0$$ => 0
         +/ [t.c * prod1(t.k, y) for t in x]

       varList p == 
          lv: List VarSet := "setUnion"/ [varList(b.k)$BASIS for b in p]
          sort(lv)

       degree(p) ==
          p=0 => error "null polynomial"
          length(leadingMonomial p)

       trunc(p, n) ==
         p = 0 => p
         degree(p) > n => trunc( reductum p , n)
         p

       product(x,y,n) ==
         x = 0 => 0
         y = 0 => 0
         +/ [t.c * prod11(t.k, y, n) for t in x]

       if R has Module(RN) then

         exp (p,n) ==
             p = 0 => 1
             not quasiRegular? p => 
               error "a proper polynomial is required"
             s : $ := 1 ; r: $ := 1                  -- resultat
             for i in 1..n repeat
                k1 :RN := 1/i
                k2 : R := k1 * 1$R
                s := k2 * product(p, s, n)
                r := r + s
             r
  
         log (p,n) ==
             p = 1 => 0
             p1: $ := 1 - p
             not quasiRegular? p1 => 
               error "constant term <> 1, impossible log "
             s : $ := - 1 ; r: $ := 0                 -- resultat
             for i in 1..n repeat
               k1 :RN := 1/i
               k2 : R := k1 * 1$R
               s := product(p1, s, n)
               r := k2 * s + r
             r
 
       LiePolyIfCan p ==
         p = 0 => 0$LPOLY
         "and"/ [retractable?(t.k)$BASIS for t in p] =>
            lt : List TERM1 := _
                 [[retract(t.k)$BASIS, t.c]$TERM1 for t in p]
            lt pretend LPOLY
         "failed"

       mirror p ==
         +/ [t.c * mirror1(t.k) for t in p]