This file is indexed.

/usr/share/axiom-20170501/src/algebra/XRPOLY.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
)abbrev domain XRPOLY XRecursivePolynomial
++ Author: Michel Petitot petitot@lifl.fr
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Description:
++ This type supports multivariate polynomials whose variables do not commute.
++ The representation is recursive. The coefficient ring may be 
++ non-commutative. Coefficients and variables commute.

XRecursivePolynomial(VarSet,R) : SIG == CODE where
  VarSet : OrderedSet
  R : Ring

  I      ==> Integer
  NNI    ==> NonNegativeInteger
  XDPOLY ==> XDistributedPolynomial(VarSet, R)
  EX     ==> OutputForm
  WORD   ==> OrderedFreeMonoid(VarSet)
  TERM   ==> Record(k:VarSet , c:%)
  LTERMS ==> List(TERM) 
  REGPOLY==> FreeModule1(%, VarSet) 
  VPOLY  ==> Record(c0:R, reg:REGPOLY)

  SIG ==> XPolynomialsCat(VarSet,R) with

    expand : % -> XDPOLY
      ++ \spad{expand(p)} returns \spad{p} in distributed form.

    unexpand : XDPOLY -> %
      ++ \spad{unexpand(p)} returns \spad{p} in recursive form.

    RemainderList : % -> LTERMS
      ++ \spad{RemainderList(p)} returns the regular part of \spad{p}
      ++ as a list of terms.

  CODE ==> add

       import(VPOLY)

    -- representation
       Rep     := Union(R,VPOLY)

    -- local functions
       construct: LTERMS -> REGPOLY
       simplifie: VPOLY -> %
       lquo1: (LTERMS,LTERMS) -> %        -- a ajouter
       coef1: (LTERMS,LTERMS) -> R        -- a ajouter
       outForm: REGPOLY -> EX

    --define
       construct(lt) == lt pretend REGPOLY

       p1:%  =  p2:%  ==
         p1 case R =>
             p2 case R => p1 =$R p2
             false
         p2 case R => false
         p1.c0 =$R p2.c0 and p1.reg =$REGPOLY p2.reg

       monom(w, r) == 
         r =0 => 0
         r * w::%

       rquo(p1:%, p2:%):% ==
         p2 case R => p1 * p2::R
         p1 case R => p1  * p2.c0
         x:REGPOLY := construct [[t.k, a]$TERM for t in listOfTerms(p1.reg) _
                         | (a:= rquo(t.c,p2)) ^= 0$% ]$LTERMS
         simplifie [coef(p1,p2) , x]$VPOLY

       trunc(p,n) ==
         n = 0 or (p case R) => (constant p)::%
         n1: NNI := (n-1)::NNI
         lt: LTERMS := [[t.k, r]$TERM for t in listOfTerms p.reg _
                        | (r := trunc(t.c, n1)) ^= 0]$LTERMS
         x: REGPOLY := construct lt
         simplifie [constant p, x]$VPOLY

       unexpand p ==
         constant? p => (constant p)::%
         vl: List VarSet := sort((y,z) +-> y > z, varList p)
         x : REGPOLY := _
           construct [[v, unexpand r]$TERM for v in vl| (r:=lquo(p,v)) ^= 0]
         [constant p, x]$VPOLY

       if R has CommutativeRing then

         sh(p:%, n:NNI):% ==
            n = 0 => 1
            p case R => (p::R)** n
            n1: NNI := (n-1)::NNI
            p1: % := n * sh(p, n1)  
            lt: LTERMS := [[t.k, sh(t.c, p1)]$TERM for t in listOfTerms p.reg]
            [p.c0 ** n, construct lt]$VPOLY
 
         sh(p1:%, p2:%) ==
            p1 case R => p1::R * p2
            p2 case R => p1 * p2::R 
            lt1:LTERMS := listOfTerms p1.reg ; lt2:LTERMS := listOfTerms p2.reg
            x: REGPOLY := construct [[t.k,sh(t.c,p2)]$TERM for t in lt1]
            y: REGPOLY := construct [[t.k,sh(p1,t.c)]$TERM for t in lt2]
            [p1.c0*p2.c0,x + y]$VPOLY

       RemainderList p == 
           p case R => []
           listOfTerms( p.reg)$REGPOLY
 
       lquo(p1:%,p2:%):% ==
         p2 case R => p1 * p2
         p1 case R => p1  *$R p2.c0
         p1 * p2.c0 +$% lquo1(listOfTerms p1.reg, listOfTerms p2.reg)

       lquo1(x:LTERMS,y:LTERMS):% ==
         null x => 0$%  
         null y => 0$%
         x.first.k < y.first.k => lquo1(x,y.rest)
         x.first.k = y.first.k => 
             lquo(x.first.c,y.first.c) + lquo1(x.rest,y.rest)
         return lquo1(x.rest,y)

       coef(p1:%, p2:%):R ==
         p1 case R => p1::R * constant p2
         p2 case R => p1.c0 * p2::R
         p1.c0 * p2.c0 +$R coef1(listOfTerms p1.reg, listOfTerms p2.reg)

       coef1(x:LTERMS,y:LTERMS):R ==
         null x => 0$R
         null y => 0$R
         x.first.k < y.first.k => coef1(x,y.rest)
         x.first.k = y.first.k =>
             coef(x.first.c,y.first.c) + coef1(x.rest,y.rest)
         return coef1(x.rest,y)

       --------------------------------------------------------------
       outForm(p:REGPOLY): EX ==
          le : List EX :=  [t.k::EX * t.c::EX for t in listOfTerms p]
          reduce(_+, reverse_! le)$List(EX)

       coerce(p:$): EX ==
          p case R => (p::R)::EX
          p.c0 = 0 => outForm p.reg
          p.c0::EX + outForm p.reg 

       0 == 0$R::%

       1 == 1$R::%

       constant? p ==  p case R

       constant p == 
          p case R => p
          p.c0

       simplifie p ==
         p.reg = 0$REGPOLY => (p.c0)::%
         p

       coerce (v:VarSet):% ==
         [0$R,coerce(v)$REGPOLY]$VPOLY

       coerce (r:R):% == r::%

       coerce (n:Integer) == n::R::%

       coerce (w:WORD) == 
         w = 1 => 1$R
         (first w) * coerce(rest w)
 
       expand p ==
         p case R => p::R::XDPOLY
         lt:LTERMS := listOfTerms(p.reg)
         ep:XDPOLY := (p.c0)::XDPOLY
         for t in lt repeat
           ep:= ep + t.k * expand(t.c)
         ep
                
       - p:% ==
         p case R => -$R p
         [- p.c0, - p.reg]$VPOLY
 
       p1 + p2 ==
         p1 case R and p2 case R => p1 +$R p2
         p1 case R => [p1 + p2.c0 , p2.reg]$VPOLY
         p2 case R => [p2 + p1.c0 , p1.reg]$VPOLY 
         simplifie [p1.c0 + p2.c0 , p1.reg +$REGPOLY p2.reg]$VPOLY
 
       p1 - p2 ==
         p1 case R and p2 case R => p1 -$R p2
         p1 case R => [p1 - p2.c0 , -p2.reg]$VPOLY
         p2 case R => [p1.c0 - p2 , p1.reg]$VPOLY
         simplifie [p1.c0 - p2.c0 , p1.reg -$REGPOLY p2.reg]$VPOLY
 
       n:Integer * p:% ==
         n=0 => 0$%
         p case R => n *$R p
         -- [ n*p.c0,n*p.reg]$VPOLY
         simplifie [ n*p.c0,n*p.reg]$VPOLY

       r:R * p:% ==
         r=0 => 0$%
         p case R => r *$R p
         -- [ r*p.c0,r*p.reg]$VPOLY
         simplifie [ r*p.c0,r*p.reg]$VPOLY

       p:% * r:R ==
         r=0 => 0$%
         p case R => p *$R r
         -- [ p.c0 * r,p.reg * r]$VPOLY
         simplifie [ r*p.c0,r*p.reg]$VPOLY

       v:VarSet * p:% == 
          p = 0 => 0$%
          [0$R, v *$REGPOLY p]$VPOLY
 
       p1:% * p2:% ==
         p1 case R => p1::R * p2
         p2 case R => p1 * p2::R
         x:REGPOLY := p1.reg *$REGPOLY p2
         y:REGPOLY := (p1.c0)::% *$REGPOLY p2.reg  -- maladroit:(p1.c0)::% !!
         -- [ p1.c0 * p2.c0 , x+y ]$VPOLY
         simplifie [ p1.c0 * p2.c0 , x+y ]$VPOLY

       lquo(p:%, v:VarSet):% ==
         p case R => 0
         coefficient(p.reg,v)$REGPOLY

       lquo(p:%, w:WORD):% ==
         w = 1$WORD => p
         lquo(lquo(p,first w),rest w)

       rquo(p:%, v:VarSet):% ==
         p case R => 0
         x:REGPOLY := construct [[t.k, a]$TERM for t in listOfTerms(p.reg)
                         | (a:= rquo(t.c,v)) ^= 0 ]
         simplifie [constant(coefficient(p.reg,v)) , x]$VPOLY 
        
       rquo(p:%, w:WORD):% ==
         w = 1$WORD => p
         rquo(rquo(p,rest w),first w)
 
       coef(p:%, w:WORD):R ==
         constant lquo(p,w)

       quasiRegular? p == 
         p case R => p = 0$R
         p.c0 = 0$R

       quasiRegular p ==
         p case R => 0$%
         [0$R,p.reg]$VPOLY

       characteristic == characteristic()$R

       recip p ==
         p case R => recip(p::R)
         "failed"

       mindeg p ==
         p case R =>
           p = 0 => error "XRPOLY.mindeg: polynome nul !!"
           1$WORD
         p.c0 ^= 0 => 1$WORD
         "min"/[(t.k) *$WORD mindeg(t.c) for t in listOfTerms p.reg] 

       maxdeg p ==
         p case R => 
            p = 0 => error "XRPOLY.maxdeg: polynome nul !!"
            1$WORD
         "max"/[(t.k) *$WORD maxdeg(t.c) for t in listOfTerms p.reg] 

       degree p == 
          p = 0 => error "XRPOLY.degree: polynome nul !!"
          length(maxdeg p)

       map(fn,p) ==
         p case R => fn(p::R)
         x:REGPOLY := construct [[t.k,a]$TERM for t in listOfTerms p.reg
                         |(a := map(fn,t.c)) ^= 0$R]
         simplifie [fn(p.c0),x]$VPOLY

       varList p ==
         p case R => []
         lv: List VarSet:= "setUnion"/[varList(t.c) for t in listOfTerms p.reg]
         lv:= setUnion(lv,[t.k for t in listOfTerms p.reg])
         sort_!(lv)