This file is indexed.

/usr/share/axiom-20170501/src/algebra/ZMOD.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
)abbrev domain ZMOD IntegerMod
++ Author: Mark Botch
++ Description:
++ IntegerMod(n) creates the ring of integers reduced modulo the integer n.

IntegerMod(p) : SIG == CODE where
  p : PositiveInteger
  
  SIG ==> Join(CommutativeRing, Finite, ConvertibleTo Integer, StepThrough)

  CODE ==> add

    size() == p

    characteristic() == p

    lookup x == (zero? x => p; (convert(x)@Integer) :: PositiveInteger)

    -- Code is duplicated for the optimizer to kick in.

    if p <= convert(max()$SingleInteger)@Integer then

      Rep:= SingleInteger
      q := p::SingleInteger

      bloodyCompiler: Integer -> %

      bloodyCompiler n == positiveRemainder(n, p)$Integer :: Rep

      convert(x:%):Integer == convert(x)$Rep

      coerce(x):OutputForm == coerce(x)$Rep

      coerce(n:Integer):%  == bloodyCompiler n

      0 == 0$Rep

      1 == 1$Rep

      init == 0$Rep

      nextItem(n) ==
        m:=n+1
        m=0 => "failed"
        m

      x = y == x =$Rep y

      x:% * y:% == mulmod(x, y, q)

      n:Integer * x:% == mulmod(bloodyCompiler n, x, q)

      x + y == addmod(x, y, q)

      x - y == submod(x, y, q)

      random() == random(q)$Rep

      index a == positiveRemainder(a::%, q)

      - x == (zero? x => 0; q -$Rep x)

      x:% ** n:NonNegativeInteger ==
        n < p => powmod(x, n::Rep, q)
        powmod(convert(x)@Integer, n, p)$Integer :: Rep

      recip x ==
         (c1, c2, g) := extendedEuclidean(x, q)$Rep
         not (g = 1) => "failed"
         positiveRemainder(c1, q)

    else

      Rep:= Integer

      convert(x:%):Integer == convert(x)$Rep

      coerce(n:Integer):%  == positiveRemainder(n::Rep, p)

      coerce(x):OutputForm == coerce(x)$Rep

      0 == 0$Rep

      1 == 1$Rep

      init == 0$Rep

      nextItem(n) ==
        m:=n+1
        m=0 => "failed"
        m

      x = y == x =$Rep y

      x:% * y:% == mulmod(x, y, p)

      n:Integer * x:% == mulmod(positiveRemainder(n::Rep, p), x, p)

      x + y == addmod(x, y, p)

      x - y == submod(x, y, p)

      random() == random(p)$Rep

      index a == positiveRemainder(a::Rep, p)

      - x == (zero? x => 0; p -$Rep x)

      x:% ** n:NonNegativeInteger == powmod(x, n::Rep, p)

      recip x ==
         (c1, c2, g) := extendedEuclidean(x, p)$Rep
         not (g = 1) => "failed"
         positiveRemainder(c1, p)