/usr/share/axiom-20170501/input/allfact.input is in axiom-test 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | )set break resume
)spool allfact.output
)set message test on
)set message auto off
)clear all
-- factorization of integer numbers
--S 1 of 21
n:=45234258258293
--R
--R
--R (1) 45234258258293
--R Type: PositiveInteger
--E 1
--S 2 of 21
factor n
--R
--R
--R (2) 13 19 269 8387 81173
--R Type: Factored(Integer)
--E 2
-- factorization of gaussian integers
--S 3 of 21
m:(Complex Integer) := 1324567+%i*53523582
--R
--R
--R (3) 1324567 + 53523582%i
--R Type: Complex(Integer)
--E 3
--S 4 of 21
factor m
--R
--R
--R (4) (2 + 7%i)(7119136 + 1844815%i)
--R Type: Factored(Complex(Integer))
--E 4
-- factorization of polynomials over finite fields
--S 5 of 21
u:UP(x,PF(19)) :=3*x^4+2*x^2+15*x+18
--R
--R
--R 4 2
--R (5) 3x + 2x + 15x + 18
--R Type: UnivariatePolynomial(x,PrimeField(19))
--E 5
--S 6 of 21
factor u
--R
--R
--R 3 2
--R (6) 3(x + 18)(x + x + 8x + 13)
--R Type: Factored(UnivariatePolynomial(x,PrimeField(19)))
--E 6
-- factorization of polynomials over the integers
--S 7 of 21
v:UP(x,INT):= (4*x^3+2*x^2+1)*(12*x^5-x^3+12)
--R
--R
--R 8 7 6 5 3 2
--R (7) 48x + 24x - 4x + 10x + 47x + 24x + 12
--R Type: UnivariatePolynomial(x,Integer)
--E 7
--S 8 of 21
factor v
--R
--R
--R 3 2 5 3
--R (8) (4x + 2x + 1)(12x - x + 12)
--R Type: Factored(UnivariatePolynomial(x,Integer))
--E 8
-- factorization of multivariate polynomial over the integers
--S 9 of 21
w:MPOLY([x,y,z],INT) :=(x^2-y^2-z^2)*(x^2+y^2+z^2)*(z*y+3*z)
--R
--R
--R 4 5 4 3 3 3 2 5 5
--R (9) (z y + 3z)x - z y - 3z y - 2z y - 6z y - z y - 3z
--R Type: MultivariatePolynomial([x,y,z],Integer)
--E 9
--S 10 of 21
factor w
--R
--R
--R 2 2 2 2 2 2
--R (10) z(y + 3)(x - y - z )(x + y + z )
--R Type: Factored(MultivariatePolynomial([x,y,z],Integer))
--E 10
-- factorization of univariate and multivariate over the rational numbers
--S 11 of 21
f:MPOLY([x,y,z],FRAC INT) :=(4/9*x^2-1/16)*(x^3/27+125)
--R
--R
--R 4 5 1 3 500 2 125
--R (11) --- x - --- x + --- x - ---
--R 243 432 9 16
--R Type: MultivariatePolynomial([x,y,z],Fraction(Integer))
--E 11
--S 12 of 21
factor f
--R
--R
--R 4 3 3 2
--R (12) --- (x - -)(x + -)(x + 15)(x - 15x + 225)
--R 243 8 8
--R Type: Factored(MultivariatePolynomial([x,y,z],Fraction(Integer)))
--E 12
-- factorization over rational functions
--S 13 of 21
g:DMP([x,y],FRAC POLY INT):=a^2*x^2/b^2 -c^2*y^2/d^2
--R
--R
--R 2 2
--R a 2 c 2
--R (13) -- x - -- y
--R 2 2
--R b d
--R Type: DistributedMultivariatePolynomial([x,y],Fraction(Polynomial(Integer)))
--E 13
--S 14 of 21
factor g
--R
--R
--R 2
--R a b c b c
--R (14) -- (x - --- y)(x + --- y)
--R 2 a d a d
--R b
--IType: Factored ...
--E 14
-- decomposition of a rational function
--S 15 of 21
r:FRAC POLY INT:= (a^3/b^3-c^3/(b+1)^3)*(a*d+a/c)
--R
--R
--R (15)
--R 3 4 4 3 4 2 4 4 3 3 4 3 4 2 4 4
--R (- a b c + (a b + 3a b + 3a b + a )c)d - a b c + a b + 3a b + 3a b + a
--R -----------------------------------------------------------------------------
--R 6 5 4 3
--R (b + 3b + 3b + b )c
--R Type: Fraction(Polynomial(Integer))
--E 15
--S 16 of 21
factorFraction r
--R
--R
--R 2 2 2 2 2 2 2
--R a(b c - a b - a)(b c + (a b + a b)c + a b + 2a b + a )(c d + 1)
--R (16) - ------------------------------------------------------------------
--R 3 3
--R b (b + 1) c
--R Type: Fraction(Factored(Polynomial(Integer)))
--E 16
-- factorization over simple algebraic extensions
--S 17 of 21
aa|aa^2+aa+1
--R
--R Your statement has resulted in the following assignments and
--R declaration:
--R
--I SAEaa := SimpleAlgebraicExtension(Fraction Integer,...
--R aa : SAEaa := aa
--R
--R (17) aa
--IType: SimpleAlgebraicExtension(Fraction Integer,...
--E 17
--S 18 of 21
p:UP(x,SAEaa) :=(x^3+aa^2*x+1)*(aa*x^2+aa*x+aa)^2
--R
--R
--R (18)
--R 7 6 5 4 3
--R (- aa - 1)x + (- 2aa - 2)x + (- 2aa - 3)x + (- aa - 3)x - 3x
--R +
--R 2
--R (- aa - 3)x + (- aa - 2)x - aa - 1
--IType: UnivariatePolynomial(x,SimpleAlgebraicExtension(...
--E 18
--S 19 of 21
factor(p)$SAEFACT(UP('aa,FRAC INT),SAEaa,UP(x,SAEaa))
--R
--R
--R 2 2 3
--R (19) (- aa - 1)(x - aa) (x + aa + 1) (x + (- aa - 1)x + 1)
--IType: Factored UnivariatePolynomial(x,SimpleAlgebraicExtension(...
--E 19
-- factorization over algebraic numbers
--S 20 of 21
a:=rootOf(a^2+3)$AN
--R
--R
--R (20) a
--R Type: AlgebraicNumber
--E 20
--S 21 of 21
factor(x^2+x+1,[a])
--R
--R
--R - a + 1 a + 1
--R (21) (x + -------)(x + -----)
--R 2 2
--R Type: Factored(Polynomial(AlgebraicNumber))
--E 21
)spool
)lisp (bye)
|