/usr/share/axiom-20170501/input/coordsys.input is in axiom-test 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | --Copyright The Numerical Algorithms Group Limited 1994.
-- test input for CoordinateSystems package
draw(sin(x),x=0.5..%pi,coordinates == bipolar(1$DFLOAT))
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,0..2*%pi, 0..%pi,coordinates == bipolar(1$DFLOAT))
draw(surface(u*cos(v),u*sin(v),u),u=1..4,v=1..2*%pi,coordinates == _
bipolarCylindrical(1$DFLOAT))
--conical(a,b) maps a 3D point (lambda,mu,nu) to the rectangular coordinates:
--x = lambda*mu*nu/(a*b)
--y = lambda/a*sqrt((mu^2-a^2)*(nu^2-a^2)/(a^2-b^2))
--z = lambda/b*sqrt((mu^2-b^2)*(nu^2-b^2)/(b^2-a^2))
--NOTE: There will be a division by zero error if a*b = 0, or a^2-b^2 = 0,
-- or if b^2-a^2 = 0. Also, the following relations must be true:
-- (mu^2-a^2)*(nu^2-a^2)/(a^2-b^2) > 0 and
-- (mu^2-b^2)*(nu^2-b^2)/(b^2-a^2) > 0.
j1(t:DFLOAT):DFLOAT == 4
j2(t:DFLOAT):DFLOAT == t
draw(curve(j1,j2,j2),-9..9,coordinates == cylindrical)
draw(sin(4*t/7),t=0..14*%pi,coordinates == elliptic(1$DFLOAT))
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,0..2*%pi,0..%pi,coordinates == elliptic(1$DFLOAT))
U2:Vector Expression Integer := vector [0,0,1]
x(u,v) == beta(u) + v*delta(u)
beta u == vector [cos u, sin u, 0]
delta u == (cos(u/2)) * beta(u) + sin(u/2) * U2
vec := x(u,v)
draw(surface(vec.1,vec.2,vec.3),v=-0.5..0.5,u=0..2*%pi,coordinates == _
ellipticCylindrical(1$DFLOAT),var1Steps == 50,var2Steps == 50)
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,-%pi/2..%pi/2,0..2*%pi,coordinates == oblateSpheroidal(1$DFLOAT))
h1(t:DFLOAT):DFLOAT == t
h2(t:DFLOAT):DFLOAT == 2
draw(curve(h1,h2),-3..3,coordinates == parabolic)
draw(surface(u*cos(v),u*sin(v),2*u),u=0..4,v=0..2*%pi,coordinates == _
parabolic)
draw(surface(u*cos(v),u*sin(v),v*cos(u)),u=0..4,v=0..2*%pi,coordinates == _
parabolicCylindrical)
draw(surface(u*cos(v),u*sin(v),u*v),u=0..4,v=0..2*%pi,coordinates == _
paraboloidal,var1Steps == 50, var2Steps == 50)
draw(sin(4*t/7),t=0..14*%pi,coordinates == polar)
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,0..2*%pi, 0..%pi,coordinates == polar)
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,-%pi/2..%pi/2,0..2*%pi,coordinates == prolateSpheroidal(1$DFLOAT))
m(u:DFLOAT,v:DFLOAT):DFLOAT == 1
draw(m,0..2*%pi,0..%pi,coordinates == spherical)
draw(surface(u*cos(v),u*sin(v),u),u=1..4,v=1..4*%pi,coordinates == _
toroidal(1$DFLOAT))
|