This file is indexed.

/usr/share/axiom-20170501/input/pat.input is in axiom-test 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
)set break resume
)spool pat.output
)set message test on
)set message auto off
)clear all
--S 1 of 21
rule square(x) == x*x
--R 
--R   There are no library operations named square
--R      Use HyperDoc Browse or issue
--R                               )what op square
--R      to learn if there is any operation containing square in its name.
--R 
--RDaly Bug
--R   Cannot find a definition or applicable library operation named 
--R      square with argument type(s)
--R                                 Variable(x)
--R      Perhaps you should use @ to indicate the required return type, or
--R      $ to specify which version of the function you need.
--E 1

--S 2 of 21
fact(n | n > 0) == n * fact(n - 1)
--R 
--R                                                                   Type: Void
--E 2

--S 3 of 21
fact(0) == 1
--R 
--R                                                                   Type: Void
--E 3

--S 4 of 21
f('A) == 1
--R 
--R                                                                   Type: Void
--E 4

--S 5 of 21
f(0) == 0 otherwise
--R 
--R                                                                   Type: Void
--E 5

--S 6 of 21
binary(true) == 1
--R 
--R                                                                   Type: Void
--E 6

--S 7 of 21
binary(false) == 0
--R 
--R   1 old definition(s) deleted for function or rule binary 
--R                                                                   Type: Void
--E 7

--S 8 of 21
sinValues == rules
  sin(%pi) == 0
  sin(%pi/4) == sqrt(2)/2
--R 
--R                                                                   Type: Void
--E 8

--S 9 of 21
integrate(log(1 + tan(x)),x,0,%pi/4) == %pi/8*log(2)
--R 
--R                                                                   Type: Void
--E 9

--S 10 of 21
powerOf(x,x) == 1
--R 
--R                                                                   Type: Void
--E 10

--S 11 of 21
powerOf(x,x^n) == n
--R 
--R                                                                   Type: Void
--E 11

--S 12 of 21
powerOf(x,y) == 0 otherwise
--R 
--R                                                                   Type: Void
--E 12

--S 13 of 21
powerOf(x,x^n%) == n%
--R 
--R                                                                   Type: Void
--E 13

--S 14 of 21
powerOf(x,y) == 0 otherwise
--R 
--R   1 old definition(s) deleted for function or rule powerOf 
--R                                                                   Type: Void
--E 14

--S 15 of 21
linearExponent?(exp(%a*x+%b | freeOf?(%a,x) and freeOf?(%b,x)),x) == true
--R 
--R                                                                   Type: Void
--E 15

--S 16 of 21
linearExponent?(exp(a) | freeOf?(a,x),x) == true
--R 
--R                                                                   Type: Void
--E 16

--S 17 of 21
linearExponent?(u,x) == false
--R 
--R                                                                   Type: Void
--E 17

--S 18 of 21
linearExponent?(exp(x),x) == true
--R 
--R                                                                   Type: Void
--E 18

--S 19 of 21
linearExponent?(exp(a*x) | freeOf?(a,x),x) == true
--R 
--R                                                                   Type: Void
--E 19

--S 20 of 21
linearExponent?(exp(x+b) | freeOf?(b,x),x) == true
--R 
--R                                                                   Type: Void
--E 20

--S 21 of 21
linearExponent?(exp(a*x+b,x) | freeOf?(a,x) and freeOf?(b,x)) == true
--R 
--R                                                                   Type: Void
--E 21
)spool 
)lisp (bye)